Learn R Programming

PublicationBiasBenchmark (version 0.1.3)

method.RMA: Random Effects Meta-Analysis Method

Description

Implements the publication bias-unadjusted random-effects meta-analysis.

Usage

# S3 method for RMA
method(method_name, data, settings)

Value

Data frame with RMA results

Arguments

method_name

Method name (automatically passed)

data

Data frame with yi (effect sizes) and sei (standard errors)

settings

List of method settings (see Details)

Details

The following settings are implemented

"default"

Restricted Maximum Likelihood estimator (method = "REML") with Knapp-Hartung adjustment (test = "knha") for a simple random effects meta-analysis and Restricted Maximum Likelihood estimator (method = "REML") with t-distribution adjustment (test = "t") and cluster robust standard errors with small-sample adjustment (if converged, otherwise no small-sample adjustment or no cluster robust standard errors) for a multilevel random effects meta-analysis if study_ids is specified in the data

References

Examples

Run this code
# Generate some example data
data <- data.frame(
  yi = c(0.2, 0.3, 0.1, 0.4, 0.25),
  sei = c(0.1, 0.15, 0.08, 0.12, 0.09)
)

# Apply RMA method
result <- run_method("RMA", data)
print(result)

Run the code above in your browser using DataLab