data(Diabetes)
## Linear regression
f = glm(bp.2s~frame+gender+age,data=Diabetes)
publish(f)
publish(f,factor.reference="inline")
publish(f,pvalue.stars=TRUE)
publish(f,ci.format="(l,u)")
### interaction
fit = glm(bp.2s~frame+gender*age,data=Diabetes)
summary(fit)
publish(fit)
Fit = glm(bp.2s~frame*gender+age,data=Diabetes)
publish(Fit)
## Logistic regression
Diabetes$hyper1 <- factor(1*(Diabetes$bp.1s>140))
lrfit <- glm(hyper1~frame+gender+age,data=Diabetes,family=binomial)
publish(lrfit)
### interaction
lrfit1 <- glm(hyper1~frame+gender*age,data=Diabetes,family=binomial)
publish(lrfit1)
lrfit2 <- glm(hyper1~frame*gender+age,data=Diabetes,family=binomial)
publish(lrfit2)
## Poisson regression
data(trace)
trace <- Units(trace,list("age"="years"))
fit <- glm(dead ~ smoking+sex+age+Time+offset(log(ObsTime)), family="poisson",data=trace)
rtf <- regressionTable(fit,factor.reference = "inline")
summary(rtf)
publish(fit)
## gls regression
if (requireNamespace("nlme",quietly=TRUE)){
requireNamespace("lava",quietly=TRUE)
library(lava)
library(nlme)
m <- lvm(Y ~ X1 + gender + group + Interaction)
distribution(m, ~gender) <- binomial.lvm()
distribution(m, ~group) <- binomial.lvm(size = 2)
constrain(m, Interaction ~ gender + group) <- function(x){x[,1]*x[,2]}
d <- sim(m, 1e2)
d$gender <- factor(d$gender, labels = letters[1:2])
d$group <- factor(d$group)
e.gls <- gls(Y ~ X1 + gender*group, data = d,
weights = varIdent(form = ~1|group))
publish(e.gls)
## lme
fm1 <- lme(distance ~ age*Sex,
random = ~1|Subject,
data = Orthodont)
res <- publish(fm1)
}
Run the code above in your browser using DataLab