mleAND: Maximum likelihood estimation (MLE) for the quantile-based asymmetric normal distribution.
Description
The log-likelihood function \(\ell_n(\mu,\phi,\alpha)=\ln[L_n(\mu,\phi,\alpha)]\)
and parameter estimation of \( \theta=(\mu,\phi,\alpha)\) in the asymmetric normal distribution
by using the maximum likelihood estimation are discussed in Gijbels et al. (2019a).
Usage
mleAND(y, alpha = NULL)
Arguments
y
This is a vector of quantiles.
alpha
This is the index parameter \(\alpha\).
Value
The maximum likelihood estimate of parameter \(\theta=(\mu,\phi,\alpha)\) of the quantile-based asymmetric normal distribution.
References
Gijbels, I., Karim, R. and Verhasselt, A. (2019a). On quantile-based asymmetric family of distributions: properties and inference. International Statistical Review, https://doi.org/10.1111/insr.12324.