momentATD: Moments estimation for the quantile-based asymmetric Student's-\(t\) distribution.
Description
Mean, variance, skewness, kurtosis and moments about the location parameter (i.e., \(\alpha\)th quantile) of the quantile-based asymmetric Student's-\(t\) distribution defined in Gijbels et al. (2019a) useful for quantile regression with location parameter equal to \(\mu\), scale parameter \(\phi\) and index parameter \(\alpha\).
Usage
meanATD(mu, phi, alpha, nu)
varATD(mu, phi, alpha, nu)
skewATD(alpha, nu)
kurtATD(alpha, nu)
momentATD(phi, alpha, nu, r)
Arguments
mu
This is the location parameter \(\mu\).
phi
This is the scale parameter \(\phi\).
alpha
This is the index parameter \(\alpha\).
nu
This is the degrees of freedom parameter \(\nu\), which must be positive.
r
This is a value which is used to calculate the \(r\)th moment \((r\in\{1,2,3,4\})\) about \(\mu\).
Value
meanATD provides the mean, varATD provides the variance, skewATD provides the skewness, kurtATD provides the kurtosis, and momentATD provides the \(r\)th moment about the location parameter \(\mu\) of the quantile-based asymmetric Student's-\(t\) distribution.
References
Gijbels, I., Karim, R. and Verhasselt, A. (2019a). On quantile-based asymmetric family of distributions: properties and inference. International Statistical Review, https://doi.org/10.1111/insr.12324.