# csQCA using Krook (2010)
#-------------------------
data(d.Kro)
head(d.Kro)
# print truth table
truthTable(d.Kro, outcome = "WNP")
# print complete truth table, show cases, and first sort by
# inclusion scores, then by number of cases
truthTable(d.Kro, outcome = "WNP", complete = TRUE,
show.cases = TRUE, sort.by = c("incl", "n"))
# code configurations with single case as remainders
Kro.tt <- truthTable(d.Kro, outcome = "WNP", n.cut = 2,
show.cases = TRUE)
Kro.tt
# print cases that were assigned to remainders based on n.cut
Kro.tt$excluded
# fsQCA using Emmenegger (2011)
#------------------------------
data(d.Emm)
head(d.Emm)
# code non-remainder configurations with inclusion scores
# between 0.5 and 0.9 as contradictions
Emm.tt <- truthTable(d.Emm, outcome = "JSR", incl.cut1 = 0.9,
incl.cut0 = 0.5)
Emm.tt
# truth table based on negated outcome set
Emm.tt <- truthTable(d.Emm, outcome = "JSR", neg.out = TRUE,
incl.cut1 = 0.9, incl.cut0 = 0.5)
Emm.tt
# mvQCA using Hartmann and Kemmerzell (2010)
#-------------------------------------------
data(d.HK)
head(d.HK)
# code non-remainder configurations with inclusion scores below 1
# but above 0.4 as contradictions
HK.tt <- truthTable(d.HK, outcome = "PB",
conditions = c("C","F","T","V"), incl.cut0 = 0.4)
HK.tt
# list the number of levels (values)
HK.tt$noflevels
# which configurations have more than 2 cases?
HK.tt$tt[which(HK.tt$tt$n > 2), ]
# code output function values in truth table based on
# exact binomial test (condition variable V dropped)
HK.tt <- truthTable(d.HK, outcome = "PB",
conditions = c("C","F","T"), incl.cut1 = 0.9, incl.cut0 = 0.4,
show.cases = TRUE, inf.test = c("binom", 0.1))
HK.tt
# tQCA using Ragin and Strand (2008)
#-----------------------------------
data(d.RS)
head(d.RS)
# tQCA truth table with "don't care" values
truthTable(d.RS, outcome = "REC")
Run the code above in your browser using DataLab