Learn R Programming

QCSIS (version 0.1)

CQCSIS: Compsote Quantile Correlation-Sure Independence Screening (CQC-SIS)

Description

The function implemrnts the composite quantile correlation-sure independence screening (CQC-SIS).

Usage

CQCSIS(x, y, d)

Arguments

x
The design matrix, of dimensions n * p, without an intercept.
y
The response vector of dimension n * 1.
d
The tuning parameter used to covarites had significant effect on the response variable, such as [n/log(n)], or n-1.

Value

w
The estimate of w.
M
The subscript of x recuited by CQC-SIS.

References

Xuejun Ma et al.. Robust feature screening via composite quantile correlation learning. In submission.

Examples

Run this code
n <- 20
p <- 200
x <- matrix(rnorm(n * p), n, p)
e <-  rnorm(n, 0, 1)
beta1 <- 3 - runif(1)
beta2 <- 3 - runif(1)
beta3 <- 3 - runif(1)
y <- beta1 * x[, 1] + beta2 * x[, 2] + beta3 * x[, 3] + e
d <- 19
fit.CQCSIS <- CQCSIS(x = x, y = y, d = d)
fit.CQCSIS$M


Run the code above in your browser using DataLab