## This example takes some time to run.
## Please uncomment code below to run.
#library(dplyr)
#library(compositions)
## Package data: FAs
#data(FAset)
#fa.set = as.vector(unlist(FAset))
## Package data: Prey
#data(preyFAs)
#prey.sub=(preyFAs[,4:(ncol(preyFAs))])[fa.set]
#prey.sub=prey.sub/apply(prey.sub,1,sum)
#group=as.vector(preyFAs$Species)
#prey.sub = cbind(group,prey.sub)
#sort.preytype <- order(prey.sub[, 1])
#prey.matrix <- prey.sub[sort.preytype,]
## Package data: Predators
#data(predatorFAs)
#tombstone.info = predatorFAs[,1:4]
#predator.matrix = predatorFAs[,5:(ncol(predatorFAs))]
#npredators = nrow(predator.matrix)
## Package data: Fat content
#FC = preyFAs[,c(2,3)]
#FC = as.vector(tapply(FC$lipid,FC$Species,mean,na.rm=TRUE))
## Package data: Calibration coefficients
#data(CC)
#cal.vec = CC[,2]
#cal.mat = replicate(npredators, cal.vec)
#rownames(cal.mat) <- CC$FA
#names(cal.vec) <- rownames(cal.mat)
## QFASA (KL)
#sample.qfasa <- p.QFASA(predator.matrix,MEANmeth(prey.matrix),cal.mat,
#dist.meas = 1,gamma=1,FC,
#start.val = rep(1,nrow(MEANmeth(prey.matrix))),fa.set)
## Forward Selection
#sample.fs <- forward.selection(predator.matrix,prey.matrix,cal.vec,FC,fa.set,
#min.spec = 5,starting.spec = c("capelin", "herring"))
## Output
#fs.estimates <- sample.fs$`Diet Estimates`
Run the code above in your browser using DataLab