Learn R Programming

QRFCCA (version 1.0)

fpca.score: Functional Principal Component Scores

Description

Calcualate the functional principal component scores

Usage

fpca.score(x, pos = NULL, gename, percentage, nbasis)

Arguments

x

Input data matrix. Each row represents the observations of a single individual. Each column represents the variables.

pos

Number of basis function for Fourier expansion and it should be an odd number.

gename

The name of the gene that the snp data belongs.

percentage

The propotion of the variance that the functional principal component scores can explain in the functional domain.

nbasis

The location or time information for each variables.

Value

The output is a list.

score

The calculated functional principal component scores

prop

The proportion of variance that the corresponding principal component scores can explain in the functional domain.

eigen

The calculated eigen value when calculating the functional principal component scores.

References

Lin N, Zhu Y, Fan R, Xiong M. A quadratically regularized functional canonical correlation analysis for identifying the global structure of pleiotropy with NGS data. PLOS Computational Biology. 2017;13(10):e1005788. doi: 10.1371/journal.pcbi.1005788.

See Also

fourier.expansion,fourier.expansion.smoothed

Examples

Run this code
# NOT RUN {
data(snp_data);
# }
# NOT RUN {
#obtain the snp position
sp = as.numeric(colnames(snp_data));   
rlt = fpca.score(snp_data,pos=sp,gename="Gene",percentage = 0.9,nbasis=45);
# }

Run the code above in your browser using DataLab