50% off | Unlimited Data & AI Learning

Last chance! 50% off unlimited learning

Sale ends in


QRM (version 0.4-7)

GEV: Generalized Extreme Value Distribution

Description

Density, quantiles, cumulative probability, and fitting of the Generalized Extreme Value distribution.

Usage

pGEV(q, xi, mu = 0, sigma = 1) 
qGEV(p, xi, mu = 0, sigma = 1) 
dGEV(x, xi, mu = 0, sigma = 1, log = FALSE) 
rGEV(n, xi, mu = 0, sigma = 1)
fit.GEV(maxima, ...)

Arguments

log
logical, whether log values of density should be returned, default is FALSE.
maxima
vector, block maxima data
mu
numeric, location parameter.
n
integer, count of random variates.
p
vector, probabilities.
q
vector, quantiles.
sigma
numeric, scale parameter.
x
vector, values to evaluate density.
xi
numeric, shape parameter.
...
ellipsis, arguments are passed down to optim().

Value

  • numeric, probability (pGEV), quantile (qGEV), density (dGEV) or random variates (rGEV) for the GEV distribution with shape parameter $\xi$, location parameter $\mu$ and scale parameter $\sigma$. A list object in case of fit.GEV().

See Also

GPD

Examples

Run this code
quantValue <- 4.5
pGEV(q = quantValue, xi = 0, mu = 1.0, sigma = 2.5) 
pGumbel(q = quantValue, mu = 1.0, sigma = 2.5)
## Fitting to monthly block-maxima
data(nasdaq)
l <- -returns(nasdaq)
em <- timeLastDayInMonth(time(l))
monmax <- aggregate(l, by = em, FUN = max) 
mod1 <- fit.GEV(monmax)

Run the code above in your browser using DataLab