Usage
fit.GPD(data, threshold = NA, nextremes = NA, type = c("ml", "pwm"),
information = c("observed", "expected"), optfunc = c("optim", "nlminb"), ...)
findthreshold(data, ne)
plotTail(object, extend = 2, fineness = 1000, ...)
MEplot(data, omit = 3, labels=TRUE, ...)
xiplot(data, models = 30., start = 15., end = 500., reverse = TRUE,
ci = 0.95, auto.scale = TRUE, labels = TRUE, table = FALSE, ...)
hillPlot(data, option = c("alpha", "xi", "quantile"), start = 15,
end = NA, reverse = FALSE, p = NA, ci = 0.95,
auto.scale = TRUE, labels = TRUE, ...)
plotFittedGPDvsEmpiricalExcesses(data, threshold = NA, nextremes = NA)
showRM(object, alpha, RM = c("VaR", "ES"), extend = 2, ci.p = 0.95,
like.num = 50., ...)
RiskMeasures(out, p)
Arguments
alpha
numeric
, probability level(s).
auto.scale
logical
, whether plot should be automatically
scaled.
ci
numeric
, probability for asymptotic confidence
bands.
ci.p
numeric
, confidence levels.
data
numeric
, data vector or timesSeries.
end
integer
, maximum number of exceedances to be
considered.
extend
numeric
, extension of plotting range.
fineness
integer
, count of points at which to evaluate
the tail estimate.
information
character
, whether standard errors should be
calculated with observed or expected
information. This only applies to maximum likelihood type; for
pwm type expected
labels
logical
, whether axes shall be labelled.
like.num
integer
, count of evaluations of profile likelihood.
type
character
, estimation by either ML- or PWM type.
models
integer
, count of consecutive gpd models to be
fitted; i.e., the count of different thresholds at which to
re-estimate $\xi$; this many $\xi$ estimates will be
plotted.
ne
integer
, count of excesses above the threshold.
nextremes
integer
, count of upper extremes to be used.
object
list
, returned value from fitting GPD
omit
integer
, count of upper plotting points to be
omitted.
optfunc
character
, function used for ML-optimization.
option
logical
, whether "alpha", "xi" (1 / alpha) or
"quantile" (a quantile estimate) should be plotted.
out
list
, returned value from fitting GPD.
p
vector
, probability levels for risk measures.
reverse
logical
, plot ordered by increasing threshold
or number of extremes.
RM
character
, risk measure, either "VaR" or "ES"
start
integer
, lowest number of exceedances to be
considered.
table
logical
, printing of a result table.
threshold
numeric
, threshold value.
...
ellpsis, arguments are passed down to either plot()
or optim()
or nlminb()
.