extremalPP(data, threshold = NA, nextremes = NA, ...)
unmark(PP)
fit.POT(PP, markdens = "GPD", ...)
fit.sePP(PP, model = c("Hawkes", "ETAS"), mark.influence = TRUE,
std.errs = FALSE, ...)
fit.seMPP(PP, markdens = "GPD", model = c("Hawkes", "ETAS"),
mark.influence = TRUE, predictable = FALSE,
std.errs = FALSE, ...)
stationary.sePP(sePP)
sePP.negloglik(theta, PP, case)
seMPP.negloglik(theta, PP, case, markdens)
volfunction(anytimes, times, marks, theta, model)
## S3 method for class 'MPP':
plot(x, ...)
## S3 method for class 'PP':
plot(x, ...)
## S3 method for class 'sePP':
plot(x, ...)
vector
, times at which to calculate
self-excitement function.timeSeries
object or vector
.numeric
, indicating Hawkes or ETAS models and
whether marks may have an influence on future points.character
, name of density of mark
distribution, currently only "GPD".logical
, whether marks of marked point
process may influence the self-excitement.vector
, marks associated with point events.character
, name of self-exciting model.integer
, count of upper extremes to be used.list
, a point process object of class PP
or
MPP
.logical
, whether previous events may
influence the scaling of mark distribution.list
, a fitted self-exciting process created with
fit.sePP()
or a marked self-exciting process created with
fit.seMPP()
.logical
, whether standard errors should be
computed.vector
, parameters of self-excitement function.numeric
, threshold value.vector
, times of point events.list
, a (un/marked) point process object of class
PP
/MPP
.plot()
or to
fit.GPD()
for fit.POT()
or to nlminb()
for
functions fit.sePP()
and fit.seMPP
or to julian()
for extremalP
extremalPP()
returns a list describing class MPP
(marked point process) consisting of times and magnitudes of threshold
exceedances:fit.POT()
, fit.seMPP()
, and
fit.sePP()
return a list containing the fitted model.
The plot
-methods return invisibly the data for producing
these.extremalPP()
: returns a list describing a marked point process
(see pages 298-301 of QRM).
fit.POT()
: fits the POT (peaks-over-threshold) model to a point
process of class PP
or MPP
. Note that if point process
is of class PP
, then function simply esitmates the rate of a
homogeneous Poisson process (see pages 301--305 of QRM).
fit.seMPP()
: fits a marked self-exciting process to a point
process object of class MPP
.
fit.sePP()
: fits self-exciting process to a point process
object of class PP
(unmarked) or MPP
(marked).
seMPP.negloglik()
: evaluates negative log-likelihood of a
marked self-exciting point process model; this objective function will
be passed to the optimizing function.
sePP.negloglik()
: evaluates negative log-likelihood of a
self-exciting point process model (unmarked).
stationary.sePP()
: checks a sufficient condition for
stationarity of a self-exciting model and gives information about
cluster size.
unmark()
: strips marks from a marked point process.
volfunction()
: calculates a self-excitement function for use in
the negloglik methods used in fit.sePP()
and
fit.seMPP()
.GPD
, nlminb
## Extremal PP
data(sp500)
l <- -returns(sp500)
lw <- window(l, start = "1995-12-31", end = end(l))
mod1 <- extremalPP(lw, ne = 100)
mod1$marks[1:5]
mod1$threshold
mod2a <- fit.sePP(mod1, mark.influence = FALSE, std.errs = TRUE)
mod2b <- fit.seMPP(mod1, mark.influence = FALSE, std.errs = TRUE)
stationary.sePP(mod2b)
mod2c <- fit.POT(mod1, method = "BFGS")
plot(mod1)
plot(unmark(mod1))
plot(mod2a)
Run the code above in your browser using DataLab