data(miscEx)
# impute missing genotypes
gdat.imp<- genoImpute(gdatF8, gmap=gmapF8, step=Inf,
gr=8, na.str=NA)
# estimate variance components
o<- estVC(y=pdatF8$bwt, x=pdatF8$sex, v=list(AA=gmF8$AA,DD=gmF8$DD,
HH=NULL, AD=NULL, MH=NULL, EE=diag(length(pdatF8$bwt))))
# run 'genoProb'
gdtmp<- gdatF8
gdtmp<- replace(gdtmp,is.na(gdtmp),0)
prDat<- genoProb(gdat=gdtmp, gmap=gmapF8, step=Inf,
gr=8, method="Haldane", verbose=TRUE)
# genome scan
llk.hk<- scanOne(y=pdatF8$bwt, x=pdatF8$sex, prdat=prDat, vc=o)
xin<- llk.hk$p > 10
# run 'mAIC' based on genome scan results
mg<- mAIC(y=pdatF8$bwt, x=pdatF8$sex, prdat=prDat, vc=o, xin=xin,
k=5, direction="back", verbose=TRUE)
mg$model$value # likelihood of the final modelRun the code above in your browser using DataLab