## Not run:
#
# data("ITNQASTUDY")
# checkListFile<-file.path(system.file("data",package="QUALIFIER"),"qaCheckList.csv.gz")
# qaTask.list<-read.qaTask(db,checkListFile)
#
# #using formula to summing up the percentage of boundary events of each channel
# #using the cutoff function to detect the FCS files that has the higher percentage of boundary events
# #than the upper threshold provided by uBound
# #Note that the percentages of all channels for each fcs file ("name" here indicates the fcs file name)
# #are summed up through the formula
# qaCheck(qaTask.list[["BoundaryEvents"]]
# ,sum(proportion) ~ RecdDt | name
# ,outlierfunc=outlier.cutoff
# ,uBound=0.0003
# )
#
# plot(qaTask.list[["BoundaryEvents"]],proportion ~ RecdDt | channel)
#
#
#
# #using Interquartile Range based outlier detection function
# #to find the outliers that has significant variance of MNC cell population among aliquots
# #here the formula is implicitly provided by qaTask object
#
# qaCheck(qaTask.list[["MNC"]],outlierfunc=qoutlier,alpha=1.5)
#
# plot(qaTask.list[["MNC"]])
# ## End(Not run)
Run the code above in your browser using DataLab