qoutlier is IQR based outlier detection.
outlier.norm is based on normal distribution using Huber M-estimator of location with MAD scale
outlier.t is based on t-distribution.
outlier.cutoff is a simple cutoff-based outlier detection.
proportion.outliers.robust(x, alpha = 0.01, isUpper = TRUE, isLower = TRUE)
proportion.outliers.mle(x, alpha = 0.01, isUpper = TRUE, isLower = TRUE)
qoutlier(x, alpha = 1.5, isUpper = TRUE, isLower = TRUE, plot = FALSE, ...)
outlier.norm(x, alpha = 0.01, z.cutoff = NULL, isUpper = TRUE, isLower = TRUE, plot = FALSE)
outlier.t(x, alpha = 0.01, z.cutoff = NULL, isUpper = TRUE, isLower = TRUE, plot = FALSE)
outlier.cutoff(x, lBound = NULL, uBound = NULL)
qaCheck
,qaReport