Learn R Programming

Qest (version 1.0.1)

internals: Internal Functions

Description

Functions for internal use only, or not yet documented.

Usage

expit(x)
logit(x)
pmax0(x)
num.fun(dx,fx)
formatPerc(probs, digits)
Ltau(opt, tau)
minabs(x1,x2)
invJ(J, type)
tensorX(X)
buildTau(ntau, wtau = NULL, nobs, wtauoptions = NULL)
callwtau(wtau, tau, opt)
callQ(Q, theta, tau, data)
start.Qest(z, y, d, x, w, tau, Q, opt, start, data, type, control)
start.Qest.family(z, y, d, x, w, tau, wtau, wtauoptions,
  Q, opt, start, data, type, control)
rq.fit.br2(x, y, tau = 0.5)

Qest.sgs.internal(theta, type, tol, maxit, alpha0, ee, display, eps, n.it, ...) Qest.gs.internal(theta, type, tol, maxit, alpha0, ee, display, eps, n.it, ...) Qest.gs(theta, type, tol, maxit, alpha0, ee, display, eps, ...) Qest.newton(theta, type, tol, maxit, safeit, alpha0, display, eps, ...)

Qlm.bfun(wtau, ...) start.Qlm(x, y, w, start, ok, Stats) scalevars.Qlm(X,y) descalecoef.Qlm(theta, Stats) Qlm.sgs.internal(theta, type, tol, maxit, alpha0, ee, display, n.it, y, X, w, bfun) Qlm.gs.internal(theta, type, tol, maxit, alpha0, ee, display, n.it, y, X, w, bfun) Qlm.gs(theta, type, tol, maxit, alpha0, ee, display, y, X, w, bfun) Qlm.newton(theta, type = "u", tol, maxit, safeit, alpha0, display, y, X, w, bfun)

plfcox(y, knots, deriv = 0) scalevars.Qcoxph(X,z,y,knots) descalecoef.Qcoxph(theta, Stats) check.singularities(X, scaleVars) starting.points.Qcox(X, Y, n, w, mf, knots) adjust.coef(theta) agsurv.Qcoxph(y, x, wt, risk, fit) basehaz.Qcoxph(fit, centered = TRUE, se.fit = FALSE) coxsurv.fit.Qcoxph(ctype, stype, se.fit, varmat, cluster, y, x, wt, risk, position, strata, oldid, y2, x2, risk2, strata2, id2, unlist = TRUE, fit) seg.lm.fit1(y,XREG,Z,PSI,return.all.sol=FALSE)

gs(theta0, f, ..., tol = 1e-4, maxit = 100) myg(theta, f, f0, eps, ...) dlist(x1,x2) omega(d, tau, type, Fy, Fz) choose_eps(Q, theta, y, data, eps0, obj = 0.01) derQtheta(theta, eps, Q, Q1, data, tau, ind) der2Qtheta(theta, eps, Q, Qtheta1, data, tau) intA(A, tau, ifun = TRUE) findp(y, tau, Q1) findAp(p,tau,A)

A_beta_fun(BB) A_gamma_fun(BB) A_beta_beta_fun(BB) A_gamma_gamma_mix_fun(BB) A_gamma_gamma_fun(BB) A_beta_gamma_fun(BB) coxBB(theta, y, X, knots, tau)

derQtheta.gamma(Q) der2Qtheta.gamma(Q, Qtheta) findAp.gamma(atau, tau, dtau, p, int = TRUE) QestGamma.ee.u(theta, eps, z, y, d, Q, w, data, tau, J = FALSE, EE) QestGamma.ee.c(theta, eps, z, y, d, Q, w, data, tau, J = FALSE, EE) QestGamma.ee.ct(theta, eps, z, y, d, Q, w, data, tau, J = FALSE, EE)

tau.pois(tau) ppoisC(y, lambda) dpoisC(y, lambda) qpoisC.955(z, lambda) qpoisC.me(log.lambda, A, B) qpoisC.bisec(tau, lambda) qpoisC(obj)

derQtheta.pois(Q) der2Qtheta.pois(Q, Qtheta) findp.pois(y, tau, Q1, Fy, theta) findAp.pois(p, tau, A) QestPois.ee.u(theta, eps, z, y, d, Q, w, data, tau, J = FALSE, EE)

QestUnif.ee.u(theta, eps, z, y, d, Q, w, data, tau, J = FALSE, EE)

QestNorm.ee.u(theta, eps, z, y, d, Q, w, data, tau, J = FALSE, EE) QestNorm.ee.c(theta, eps, z, y, d, Q, w, data, tau, J = FALSE, EE) QestNorm.ee.ct(theta, eps, z, y, d, Q, w, data, tau, J = FALSE, EE)

Qest.ee.u(theta, eps, z, y, d, Q, w, data, tau, J = FALSE, EE) Qest.ee.c(theta, eps, z, y, d, Q, w, data, tau, J = FALSE, EE) Qest.ee.ct(theta, eps, z, y, d, Q, w, data, tau, J = FALSE, EE) QCox.ee.c(theta, eps, z, y, d, X, w, knots, tau, J = FALSE, EE) QCox.ee.ct(theta, eps, z, y, d, X, w, knots, tau, J = FALSE, EE) Qlm.ee.u(theta, X, w, bfun, EE, J = FALSE)

Qest.covar(fit, eps, w) Qcox.covar(theta, z, y, d, X, w, knots, tau, type) Qlm.covar(g.i, w, H)

Loss(w, d, tau, type, Fy, Fz) coxLoss(theta, z, y, d, X, w, knots, tau, type, Fy, Fz) qlmLoss(theta, y, X, w, bfun)

# S3 method for Qest print(x, digits = max(3L, getOption("digits") - 3L), ...) # S3 method for summary.Qest print(x, digits = max(3L, getOption("digits") - 3L), ...) # S3 method for Qest confint(object, parm, level = 0.95, ...) # S3 method for Qest vcov(object, ...)

# S3 method for Qlm summary(object, correlation = FALSE, symbolic.cor = FALSE, ...) # S3 method for summary.Qlm print(x, digits = max(3L, getOption("digits") - 3L), symbolic.cor = x$symbolic.cor, signif.stars = getOption("show.signif.stars"), ...) # S3 method for Qlm vcov(object, ...)

# S3 method for Qcoxph print(x, digits = max(1L, getOption("digits") - 3L), signif.stars = FALSE, ...) # S3 method for Qcoxph summary(object, conf.int = 0.95, scale = 1, ...) # S3 method for summary.Qcoxph print(x, digits = max(getOption("digits") - 3, 3), signif.stars = getOption ("show.signif.stars"), ...) # S3 method for Qcoxph survfit(formula, newdata, se.fit = TRUE, conf.int = 0.95, individual = FALSE, stype = 2, ctype, conf.type = c("log", "log-log", "plain","none", "logit", "arcsin"), censor = TRUE, start.time, id, influence = FALSE, na.action = na.pass, type, ...) # S3 method for Qcoxph residuals(object, type = c("martingale", "deviance", "score", "schoenfeld", "dfbeta", "dfbetas", "scaledsch", "partial"), collapse = FALSE, weighted = FALSE, ...) # S3 method for Qcoxph predict(object, newdata, type = c("lp", "risk", "expected", "terms", "survival"), se.fit = FALSE, na.action = na.pass, terms = names(object$assign), collapse, reference = c("strata", "sample"), ...)

Arguments

Value

No return value, internal functions.