calculateDescriptors(graphs, ..., labels=FALSE, log=FALSE)
1000 |
--- all of 1xxx |
1001 |
wiener |
1002 |
harary |
1003 |
balabanJ |
1004 |
meanDistanceDeviation |
1005 |
compactness |
1006 |
productOfRowSums |
1007 |
hyperDistancePathIndex |
1008 |
dobrynin |
2000 |
--- all of 2xxx |
2001 |
totalAdjacency |
2002 |
zagreb1 |
2003 |
zagreb2 |
2004 |
modifiedZagreb |
2005 |
augmentedZagreb |
2006 |
variableZagreb |
2007 |
randic |
2008 |
complexityIndexB |
2009 |
normalizedEdgeComplexity |
2010 |
atomBondConnectivity |
2011 |
geometricArithmetic1 |
2012 |
geometricArithmetic2 |
2013 |
geometricArithmetic3 |
2014 |
narumiKatayama |
3000 |
--- all of 3xxx |
3001 |
topologicalInfoContent |
3002 |
bonchev1 |
3003 |
bonchev2 |
3004 |
bertz |
3005 |
radialCentric |
3006 |
vertexDegree |
3007 |
balabanlike1 |
3008 |
balabanlike2 |
3009 |
graphVertexComplexity |
3010 |
informationBondIndex |
3011 |
edgeEqualityMIC |
3012 |
edgeMagnitudeMIC |
3013 |
symmetryIndex |
3014 |
bonchev3 |
3015 |
graphDistanceComplexity |
3016 |
distanceDegreeMIC |
3017 |
distanceDegreeEquality |
3018 |
distanceDegreeCompactness |
3019 |
informationLayerIndex |
4000 |
--- all of 4xxx |
4001 |
mediumArticulation |
4002 |
efficiency |
4003 |
graphIndexComplexity |
4004 |
offdiagonal |
4005 |
spanningTreeSensitivity |
4006 |
distanceDegreeCentric |
4007 |
distanceCodeCentric |
5000 |
--- all of 5xxx |
5001 |
infoTheoreticGCM: vertcent, exp |
5002 |
infoTheoreticGCM: vertcent, lin |
5003 |
infoTheoreticGCM: sphere, exp |
5004 |
infoTheoreticGCM: sphere, lin |
5005 |
infoTheoreticGCM: pathlength, exp |
5006 |
infoTheoreticGCM: pathlength, lin |
5007 |
infoTheoreticGCM: degree, exp |
5008 |
infoTheoreticGCM: degree, lin |
5009 |
infoTheoreticLabeledV1: exp |
5010 |
infoTheoreticLabeledV1: lin |
5011 |
infoTheoreticLabeledV2 |
5012 |
infoTheoreticLabeledE: exp |
5013 |
infoTheoreticLabeledE: lin |
6000 |
--- all of 6xxx |
6001 |
eigenvalueBased: adjacencyMatrix, s=1 |
6002 |
eigenvalueBased: adjacencyMatrix, s=2 |
6003 |
eigenvalueBased: laplaceMatrix, s=1 |
6004 |
eigenvalueBased: laplaceMatrix, s=2 |
6005 |
eigenvalueBased: distanceMatrix, s=1 |
6006 |
eigenvalueBased: distanceMatrix, s=2 |
6007 |
eigenvalueBased: distancePathMatrix, s=1 |
6008 |
eigenvalueBased: distancePathMatrix, s=2 |
6009 |
eigenvalueBased: augmentedMatrix, s=1 |
6010 |
eigenvalueBased: augmentedMatrix, s=2 |
6011 |
eigenvalueBased: extendedAdjacencyMatrix, s=1 |
6012 |
eigenvalueBased: extendedAdjacencyMatrix, s=2 |
6013 |
eigenvalueBased: vertConnectMatrix, s=1 |
6014 |
eigenvalueBased: vertConnectMatrix, s=2 |
6015 |
eigenvalueBased: randomWalkMatrix, s=1 |
6016 |
eigenvalueBased: randomWalkMatrix, s=2 |
6017 |
eigenvalueBased: weightStrucFuncMatrix_lin, s=1 |
6018 |
eigenvalueBased: weightStrucFuncMatrix_lin, s=2 |
6019 |
eigenvalueBased: weightStrucFuncMatrix_exp, s=1 |
6020 |
eigenvalueBased: weightStrucFuncMatrix_exp, s=2 |
6021 |
energy |
6022 |
laplacianEnergy |
6023 |
estrada |
6024 |
laplacianEstrada |
6025 |
spectralRadius |
7000 |
--- all of 7xxx |
7001 |
oneEdgeDeletedSubgraphComplexity |
7002 |
twoEdgesDeletedSubgraphComplexity |
7003 |
globalClusteringCoeff |
8000 |
--- all of 8xxx |
8001 |
connectivityID |
8002 |
minConnectivityID |
8003 |
primeID |
8004 |
bondOrderID |
8005 |
balabanID |
8006 |
minBalabanID |
8007 |
weightedID |
The arguments to these functions, such as the distance matrix or the list of vertex degrees, will be automatically supplied and reused. After each function (or group of functions), regardless of whether it was referred to by name or by its assigned number, you may optionally pass extra arguments as a list, but note that this will not override the calculated arguments. If you wish to pass the same extra arguments to multiple functions, you can concatenate the latter to a vector.
When functions are given by name, an @NAME suffix can be used to give the column a different name in the output data frame. This is needed when you want to calculate a descriptor more than once with varying arguments.
If log is TRUE, a progress message is printed to the standard output connection for each graph in the list.
library(RBGL)
set.seed(123)
g <- randomGraph(1:8, 1:5, 0.36, weights=FALSE)
calculateDescriptors(g, 1000, 2002, 2003)
calculateDescriptors(g, "randic", "offdiagonal", 7000, labels=TRUE)
# these will give the same results (although named differently):
calculateDescriptors(g, c(6011, 6013), list(s=3))
calculateDescriptors(g,
"eigenvalueBased@ea", list(matrix_function="extendedAdjacencyMatrix", s=3),
"eigenvalueBased@vc", list(matrix_function="vertConnectMatrix", s=3))
Run the code above in your browser using DataLab