Learn R Programming

QuACN (version 1.8.0)

eigenvalueBased: Eigenvalue-based Descriptors

Description

Eigenvalue-based Descriptors

Usage

eigenvalueBased(g, matrix_function, s=1)

Arguments

g
A graph as a graphNEL object.
matrix_function
The matrix function to calculate the desired matrix for the graph. For details see the vignette or the example section below.
s
Parameter to caluclate the descriptors, see reference. Default set to 1.

Value

HMs
Formula (2) in the reference paper.
SMstance
Formula (3) in the reference paper.
ISMs
Formula (4) in the reference paper.
PMs
Formula (5) in the reference paper.
IPMs
Formula (6) in the reference paper.

Details

For details see the Vignette.

References

Dehmer M, Sivakumar L, Varmuzua K: Uniquely Discriminating Molecular Structures Using Novel Eigenvalue Based Descriptors. match 2012, 67:147-172

Examples

Run this code
library(RBGL)
set.seed(123)
g <- randomGraph(1:8, 1:5, 0.36, weights=FALSE)
mat.dist <- distanceMatrix(g)

##Matrices like in the paper
##1. adjacency matrix
eigenvalueBased(g,adjacencyMatrix,2)
##2. Laplacian matrix
eigenvalueBased(g,laplaceMatrix,2)
##3. Distance matrix
eigenvalueBased(g,distanceMatrix,2)
##4. Distance path Matrix
eigenvalueBased(g,distancePathMatrix,2)
##5. Augmented vertex degree matrix
eigenvalueBased(g,augmentedMatrix,2)
##6. Extended adjacency matrix
eigenvalueBased(g,extendedAdjacencyMatrix,2)
##7. Connectivity matrix 
eigenvalueBased(g,vertConnectMatrix,2) 
##8. Random Walk markov matrix 
eigenvalueBased(g,randomWalkMatrix,2)  
##9. Weighted structure function matrix IM1
eigenvalueBased(g,weightStrucFuncMatrix_lin,2) 
##10. Weighted structure function matrix IM2
eigenvalueBased(g,weightStrucFuncMatrix_exp,2)

Run the code above in your browser using DataLab