# Define the path to the plate data file
plate_path <- system.file("extdata/20240716_p3",
file = '20240716_p3_plate.xlsx',
package = "QuICSeedR")
# Read the plate data
plate <- readxl::read_xlsx(plate_path)
# Define the path to the raw data file
raw_path <- system.file("extdata/20240716_p3",
file = '20240716_p3_raw.xlsx',
package = "QuICSeedR")
# Read the raw data
raw <- readxl::read_xlsx(raw_path)
# Get replicate data
replicate <- GetReplicate(plate)
# Ensure time displayed as decimal hours
plate_time = ConvertTime(raw)
#Get metadata and display the few rows
meta = CleanMeta(raw, plate, replicate)
#Clean data
cleanraw <- CleanRaw(meta, raw, plate_time)
#Get calculations using positive controls to normalize values.
calculation = GetCalculation(raw = cleanraw, meta, sd_fold = 10)
#Formatting calculations for analysis (also compatible with graphing softwares used in F-SAA
#research)
calculation_spread = SpreadCalculation(calculation)
#Get analysis comparing samples to negative control using the one-tailed Wilcox Rank-Sum test.
analysis <- GetAnalysis(calculation_spread, control = "Neg", test = "wilcox",
alternative = 'greater')
#Summarization of results. Default method is rate of amyloid formation.
result <- SummarizeResult(analysis, calculation)
head(result)
Run the code above in your browser using DataLab