# Previous curve input
previous.curve <- matrix(0.04,nrow = 2,ncol = 8)
rownames(previous.curve) <- c("2014-01-01","2015-01-01")
colnames(previous.curve) <- c(0, 0.25, 0.5, 1:5)
# IRR's input
serie <- matrix(NA,nrow = 4,ncol = 6)
rownames(serie) <- c("2014-01-01","2015-01-01","2016-01-01","2017-01-01")
colnames(serie) <- c(0, 0.08333, 0.25, 0.5, 1, 2)
serie[1,1] <- 0.040; serie[1,2] <- 0.050; serie[1,3] <- 0.060; serie[1,4] <- 0.065
serie[1,5] <- 0.070; serie[1,6] <- 0.075
serie[2,1] <- 0.030; serie[2,2] <- 0.040; serie[2,3] <- 0.050; serie[2,4] <- 0.063
serie[2,5] <- 0.074; serie[2,6] <- 0.080
serie[3,1] <- 0.060; serie[3,2] <- 0.065; serie[3,3] <- 0.070; serie[3,4] <- 0.080
serie[3,5] <- 0.084; serie[3,6] <- 0.090
serie[4,1] <- 0.020; serie[4,2] <- 0.030; serie[4,3] <- 0.040; serie[4,4] <- 0.042
serie[4,5] <- 0.045; serie[4,6] <- 0.050
# Market Assets input
market.assets <- matrix(NA,nrow = 10,ncol = 2)
market.assets[1,1] <- 0.040 ; market.assets[2,1] <- 0.05
market.assets[3,1] <- 0.060 ; market.assets[4,1] <- 0.07
market.assets[5,1] <- 0.080 ; market.assets[6,1] <- 0.09
market.assets[7,1] <- 0.060 ; market.assets[8,1] <- 0.07
market.assets[9,1] <- 0.075 ; market.assets[10,1] <- 0.07
market.assets[1,2] <- "2016-01-01" ; market.assets[2,2] <- "2016-02-01"
market.assets[3,2] <- "2016-04-01" ; market.assets[4,2] <- "2016-07-01"
market.assets[5,2] <- "2017-01-01" ; market.assets[6,2] <- "2017-02-01"
market.assets[7,2] <- "2017-04-01" ; market.assets[8,2] <- "2017-07-01"
market.assets[9,2] <- "2018-01-01" ; market.assets[10,2] <- "2019-01-01"
#Calculation
curve.calculation(serie = serie, market.assets = market.assets,
previous.curve = previous.curve, asset.type = "TES",
freq = 1, rate.type = 1, fwd = 0,
nodes = c(0, 0.25, 0.5, 1:5), approximation = "linear")
Run the code above in your browser using DataLab