Omega
Internal function: Quantile regression with adaptively group Lasso with Omega
.
awgl_omega(Y, W, omega, lambda, tau, qn, zeta, zetaincre, maxit, tol)
A list of selected parameters.
Data matrix (\(n \times 1\)).
B-splines with covariates matrix with \(p \times L\) columns and \(n\) rows.
Weights for group lasso.
A sequence of tuning parameters.
A quantile of interest.
A bound parameter for HDIC.
A step parameter.
An increment of each step.
The maximum number of iterations.
A tolerance rate.