To compare \(gh\)-parsimonious models of Tukey \(g\)-&-\(h\) mixtures with different number of components \(K\) (up to a user-specified \(K_\text{max}\)) and select the optimal number of components.
QLMDe_stepK(
x,
distname = c("GH", "norm"),
data.name = deparse1(substitute(x)),
Kmax = 3L,
test = c("BIC", "AIC"),
direction = c("forward", "backward"),
...
)Function QLMDe_stepK() returns an object of S3 class 'stepK',
which is a list of selected models (in reversed order) with attribute(s)
'direction' and
'test'.
character scalars,
see parameters of the same names in function QLMDe()
integer scalar \(K_\text{max}\),
maximum number of components to be considered. Default 3L
character scalar, criterion to be used, either Akaike's information criterion AIC, or Bayesian information criterion BIC (default).
character scalar, direct of selection in function step_fmx(),
either 'forward' (default) or 'backward'
additional parameters
Function QLMDe_stepK() compares the \(gh\)-parsimonious models with different number of components \(K\),
and selects the optimal number of components using BIC (default) or AIC.
The forward selection starts with finding the \(gh\)-parsimonious model (via function step_fmx())
at \(K = 1\).
Let the current number of component be \(K^c\).
We compare the \(gh\)-parsimonious models of \(K^c+1\) and \(K^c\) component, respectively,
using BIC or AIC.
If \(K^c\) is preferred, then the forward selection is stopped, and \(K^c\) is considered the
optimal number of components.
If \(K^c+1\) is preferred, then
the forward selection is stopped if \(K^c+1=K_{max}\),
otherwise update \(K^c\) with \(K_c+1\) and repeat the previous steps.
data(bmi, package = 'mixsmsn')
hist(x <- bmi[[1L]])
QLMDe_stepK(x, distname = 'GH', Kmax = 2L)
Run the code above in your browser using DataLab