set.seed(123)
library(Qval)
## generate Q-matrix and data to fit
K <- 3
I <- 30
example.Q <- sim.Q(K, I)
IQ <- list(
P0 = runif(I, 0.0, 0.2),
P1 = runif(I, 0.8, 1.0)
)
example.data <- sim.data(Q = example.Q, N = 1000, IQ = IQ,
model = "GDINA", distribute = "horder")
extract(example.data,"dat")
## using MMLE/EM to fit GDINA model
example.CDM.obj <- CDM(example.data$dat, example.Q, model = "GDINA",
method = "EM", maxitr = 2000, verbose = 1)
extract(example.CDM.obj,"alpha")
extract(example.CDM.obj,"npar")
example.MQ <- sim.MQ(example.Q, 0.1)
example.CDM.obj <- CDM(example.data$dat, example.MQ, model = "GDINA",
method = "EM", maxitr = 2000, verbose = 1)
validation.obj <- validation(example.data$dat, example.MQ,
example.CDM.obj, method = "MLR-B", eps = 0.90)
extract(validation.obj,"Q.sug")
Run the code above in your browser using DataLab