################################################################
# Example 1 #
# generate data follow the uniform distrbution #
################################################################
library(Qval)
set.seed(123)
K <- 5
I <- 10
Q <- sim.Q(K, I)
IQ <- list(
P0 = runif(I, 0.0, 0.2),
P1 = runif(I, 0.8, 1.0)
)
data.obj <- sim.data(Q = Q, N = 100, IQ=IQ, model = "GDINA", distribute = "uniform")
print(data.obj$dat)
################################################################
# Example 2 #
# generate data follow the mvnorm distrbution #
################################################################
set.seed(123)
K <- 5
I <- 10
Q <- sim.Q(K, I)
IQ <- list(
P0 = runif(I, 0.0, 0.2),
P1 = runif(I, 0.8, 1.0)
)
cutoffs <- sample(qnorm(c(1:K)/(K+1)), ncol(Q))
data.obj <- sim.data(Q = Q, N = 10, IQ=IQ, model = "GDINA", distribute = "mvnorm",
control = list(sigma = 0.5, cutoffs = cutoffs))
print(data.obj$dat)
#################################################################
# Example 3 #
# generate data follow the horder distrbution #
#################################################################
set.seed(123)
K <- 5
I <- 10
Q <- sim.Q(K, I)
IQ <- list(
P0 = runif(I, 0.0, 0.2),
P1 = runif(I, 0.8, 1.0)
)
theta <- rnorm(10, 0, 1)
b <- seq(-1.5,1.5,length.out=K)
data.obj <- sim.data(Q = Q, N = 10, IQ=IQ, model = "GDINA", distribute = "horder",
control = list(theta = theta, a = 1.5, b = b))
print(data.obj$dat)
Run the code above in your browser using DataLab