Learn R Programming

Qval (version 1.2.4)

print: Print Methods for Various Objects

Description

Print concise, user-friendly summaries of objects generated by the Qval package. Supports objects of classes CDM, validation, sim.data, fit, is.Qident, att.hierarchy, as well as their corresponding summary objects.

Usage

# S3 method for CDM
print(x, ...)

# S3 method for validation print(x, ...)

# S3 method for sim.data print(x, ...)

# S3 method for fit print(x, ...)

# S3 method for is.Qident print(x, ...)

# S3 method for att.hierarchy print(x, ...)

# S3 method for summary.CDM print(x, ...)

# S3 method for summary.validation print(x, ...)

# S3 method for summary.sim.data print(x, ...)

# S3 method for summary.fit print(x, ...)

# S3 method for summary.is.Qident print(x, ...)

# S3 method for summary.att.hierarchy print(x, ...)

Value

Invisibly returns x.

Arguments

x

An object of the appropriate class (e.g., CDM, validation, sim.data, fit, is.Qident, att.hierarchy, or their summaries).

...

Currently unused. Additional arguments are ignored.

Methods (by class)

  • print(CDM): Print method for CDM objects

  • print(validation): Print method for validation objects

  • print(sim.data): Print method for sim.data objects

  • print(fit): Print method for fit objects

  • print(is.Qident): Print method for is.Qident objects

  • print(att.hierarchy): Print method for att.hierarchy objects

  • print(summary.CDM): Print method for summary.CDM objects

  • print(summary.validation): Print method for summary.validation objects

  • print(summary.sim.data): Print method for summary.sim.data objects

  • print(summary.fit): Print method for summary.fit objects

  • print(summary.is.Qident): Print method for summary.is.Qident objects

  • print(summary.att.hierarchy): Print method for summary.att.hierarchy objects

Details

The print methods provide an at-a-glance view of key information:

print.CDM

displays sample size, item and attribute counts, and package information.

print.validation

shows suggested modifications to the Q-matrix, marking changed entries with an asterisk.

print.sim.data

reports dimensions of simulated data and offers guidance on extraction.

print.fit

show basic fit indices.

print.is.Qident

prints basic results from is.Qident.

print.att.hierarchy

prints basic results from att.hierarchy.

print.summary.CDM

prints fitted model details and alpha-pattern distribution from a summary.CDM object.

print.summary.validation

prints suggested Q-matrix changes or a message if none are recommended.

print.summary.sim.data

prints attribute-pattern frequencies and proportions from summary.sim.data.

print.summary.fit

prints basic fit indices from summary.fit.

print.summary.is.Qident

prints basic results from summary.is.Qident.

print.summary.att.hierarchy

prints basic results from summary.att.hierarchy.

Examples

Run this code
set.seed(123)
library(Qval)

# \donttest{
################################################################
# Example 1: print a CDM object                                #
################################################################
Q <- sim.Q(3, 20)
IQ <- list(P0 = runif(20, 0.0, 0.2), P1 = runif(20, 0.8, 1.0))
data.obj <- sim.data(Q = Q, N = 500, IQ = IQ, 
                     model = "GDINA", distribute = "horder")
CDM.obj <- CDM(data.obj$dat, Q, model = "GDINA", 
               method = "EM", maxitr = 2000, verbose = 1)
print(CDM.obj)


################################################################
# Example 2: print a validation object                         #
################################################################
set.seed(123)
MQ <- sim.MQ(Q, 0.1)
CDM.obj <- CDM(data.obj$dat, MQ)
validation.obj <- validation(data.obj$dat, MQ, CDM.obj, 
                             method = "GDI")
print(validation.obj)


################################################################
# Example 3: print a sim.data object                           #
################################################################
set.seed(123)
Q2 <- sim.Q(3, 10)
data.obj2 <- sim.data(Q = Q2, N = 1000)
print(data.obj2)


################################################################
# Example 4: print a fit object                           #
################################################################
set.seed(123)
Q2 <- sim.Q(3, 10)
fit.obj <- fit(Y = data.obj$dat, Q = Q, model = "GDINA")
print(fit.obj)


################################################################
# Example 5: print summary objects                             #
################################################################
summary.CDM.obj <- summary(CDM.obj)
print(summary.CDM.obj)

summary.val.obj <- summary(validation.obj)
print(summary.val.obj)

summary.sim.obj <- summary(data.obj2)
print(summary.sim.obj)

summary.fit <- summary(fit.obj)
print(summary.fit)
# }

Run the code above in your browser using DataLab