Learn R Programming

R2MLwiN (version 0.8-2)

predCurves: Draws predicted curves (lines) using estimates from the fixed part of a fitted model.

Description

This function draws predicted curves (lines) against an explanatory variable for each category of a categorical variable.

Usage

predCurves(object, indata = NULL, xname, group = NULL, legend = TRUE, legend.space = "top", legend.ncol = 2, ...)

Arguments

object
indata
A data.frame object containing the data. If not specified, data is extracted from the object.
xname
The name of variable to be plotted.
group
A character string or a sequence of length equivalent to rows of data to plot. group = NULL by default.
legend
A logical value indicating whether a legend for group is to be added.
legend.space
A character string specifies one of the four sides, which can be one of 'top', 'bottom', 'left' and 'right'. Default, legend.space = 'top'.
legend.ncol
An integer specifies a number of columns, possibly divided into blocks, each containing some rows. Default, legend.ncol = 2.
...
Other arguments to be passed to xyplot.

See Also

predLines

Examples

Run this code
## Not run: 
# library(R2MLwiN)
# # NOTE: if MLwiN not saved in location R2MLwiN defaults to, specify path via:
# # options(MLwiN_path = 'path/to/MLwiN vX.XX/')
# # If using R2MLwiN via WINE, the path may look like this:
# # options(MLwiN_path = '/home/USERNAME/.wine/drive_c/Program Files (x86)/MLwiN vX.XX/')
# 
# ## Read alevchem data
# data(alevchem, package = "R2MLwiN")
# 
# alevchem$gcseav <- double2singlePrecision(alevchem$gcse_tot/alevchem$gcse_no - 6)
# # Avoids warning when fitting factor as continuous response:
# alevchem$a_point_num <- as.numeric(alevchem$a_point)
# 
# ## Example: A-level Chemistry
# (mymodel <- runMLwiN(a_point_num ~ 1 + gcseav + I(gcseav^2) + I(gcseav^3)
#                      + gender + (1 | pupil), estoptions = list(EstM = 1,  resi.store = TRUE),
#                      data = alevchem))
# 
# predCurves(mymodel, xname = "gcseav", group = "genderfemale")
# ## End(Not run)

Run the code above in your browser using DataLab