Learn R Programming

R2WinBUGS (version 2.1-13)

bugs: Run WinBUGS and OpenBUGS from R or S-PLUS

Description

The bugs function takes data and starting values as input. It automatically writes a WinBUGS script, calls the model, and saves the simulations for easy access in Ror S-PLUS.

Usage

bugs(data, inits, parameters.to.save, model.file="model.bug",
    n.chains=3, n.iter=2000, n.burnin=floor(n.iter/2),
    n.thin=max(1, floor(n.chains * (n.iter - n.burnin) / n.sims)),
    n.sims = 1000, bin=(n.iter - n.burnin) / n.thin,
    debug=FALSE, DIC=TRUE, digits=5, codaPkg=FALSE,
    bugs.directory="c:/Program Files/WinBUGS14/",
    program=c("WinBUGS", "OpenBUGS", "winbugs", "openbugs"),
    working.directory=NULL, clearWD=FALSE,
    useWINE=.Platform$OS.type != "windows", WINE=NULL,
    newWINE=TRUE, WINEPATH=NULL, bugs.seed=NULL, summary.only=FALSE,
    save.history=!summary.only)

Arguments

data
either a named list (names corresponding to variable names in the model.file) of the data for the WinBUGS model, or a vector or list of the names of the data objects used by the model. If data i
inits
a list with n.chains elements; each element of the list is itself a list of starting values for the WinBUGS model, or a function creating (possibly random) initial values. Alternatively, if inits=NULL<
parameters.to.save
character vector of the names of the parameters to save which should be monitored
model.file
file containing the model written in WinBUGS code. The extension can be either .bug or .txt. If the extension is .bug and program=="WinBUGS", a copy of the file with extension <
n.chains
number of Markov chains (default: 3)
n.iter
number of total iterations per chain (including burn in; default: 2000)
n.burnin
length of burn in, i.e. number of iterations to discard at the beginning. Default is n.iter/2, that is, discarding the first half of the simulations.
n.thin
thinning rate. Must be a positive integer. Set n.thin > 1 to save memory and computation time if n.iter is large. Default is max(1, floor(n.chains * (n.iter-n.burnin) / 1000)) which will only thin if
n.sims
The approximate number of simulations to keep after thinning.
bin
number of iterations between saving of results (i.e. the coda files are saved after each bin iterations); default is to save only at the end.
debug
if FALSE (default), WinBUGS is closed automatically when the script has finished running, otherwise WinBUGS remains open for further investigation
DIC
logical; if TRUE (default), compute deviance, pD, and DIC. This is done in WinBUGS directly using the rule pD = Dbar - Dhat. If there are less iterations than required for the adaptive phase, the rule <
digits
number of significant digits used for WinBUGS input, see formatC
codaPkg
logical; if FALSE (default) a bugs object is returned, if TRUE file names of WinBUGS output are returned for easy access by the coda package through function
bugs.directory
directory that contains the WinBUGS executable. If the global option R2WinBUGS.bugs.directory is not NULL, it will be used as the default.
program
the program to use, either winbugs/WinBUGS or openbugs/OpenBUGS, the latter makes use of function openbugs and requires the CRAN package <
working.directory
sets working directory during execution of this function; WinBUGS' in- and output will be stored in this directory; if NULL, a temporary working directory via tempdir
clearWD
logical; indicating whether the files data.txt, inits[1:n.chains].txt, log.odc, codaIndex.txt, and coda[1:nchains].txt should be removed after WinBUGS has finished.
useWINE
logical; attempt to use the Wine emulator to run WinBUGS, defaults to FALSE on Windows, and TRUE otherwise. Not available in S-PLUS.
WINE
character, path to wine binary file, it is tried hard (by a guess and the utilities which and locate) to get the information automatically if not given.
newWINE
Use new versions of Wine that have winepath utility
WINEPATH
character, path to winepath binary file, it is tried hard (by a guess and the utilities which and locate) to get the information automatically if not given.
bugs.seed
random seed for WinBUGS (default is no seed)
summary.only
If TRUE, only a parameter summary for very quick analyses is given, temporary created files are not removed in that case.
save.history
If TRUE (the default), trace plots are generated at the end.

Value

  • If codaPkg=TRUE the returned values are the names of coda output files written by WinBUGS containing the Markov Chain Monte Carlo output in the CODA format. This is useful for direct access with read.bugs. If codaPkg=FALSE, the following values are returned:
  • n.chainssee Section Arguments
  • n.itersee Section Arguments
  • n.burninsee Section Arguments
  • n.thinsee Section Arguments
  • n.keepnumber of iterations kept per chain (equal to (n.iter-n.burnin) / n.thin)
  • n.simsnumber of posterior simulations (equal to n.chains * n.keep)
  • sims.array3-way array of simulation output, with dimensions n.keep, n.chains, and length of combined parameter vector
  • sims.listlist of simulated parameters: for each scalar parameter, a vector of length n.sims for each vector parameter, a 2-way array of simulations, for each matrix parameter, a 3-way array of simulations, etc. (for convenience, the n.keep*n.chains simulations in sims.matrix and sims.list (but NOT sims.array) have been randomly permuted)
  • sims.matrixmatrix of simulation output, with n.chains*n.keep rows and one column for each element of each saved parameter (for convenience, the n.keep*n.chains simulations in sims.matrix and sims.list (but NOT sims.array) have been randomly permuted)
  • summarysummary statistics and convergence information for each saved parameter.
  • meana list of the estimated parameter means
  • sda list of the estimated parameter standard deviations
  • mediana list of the estimated parameter medians
  • root.shortnames of argument parameters.to.save and deviance
  • long.shortindexes; programming stuff
  • dimension.shortdimension of indexes.short
  • indexes.shortindexes of root.short
  • last.valueslist of simulations from the most recent iteration; they can be used as starting points if you wish to run WinBUGS for further iterations
  • pDan estimate of the effective number of parameters, for calculations see the section Arguments.
  • DICmean(deviance) + pD

itemize

  • MS Windows

item

Linux, Mac OS X and Unix in general

code

bugs.directory

pkg

WinBUGS

dQuote

  • c:/Program Files/WinBUGS14/
  • /path/to/wine/folder/dosdevices/c:/Program Files/WinBUGS14

Details

To run:
  1. Write aBUGSmodel in an ASCII file (hint: usewrite.model).
  2. Go intoR/ S-PLUS.
  3. Prepare the inputs for thebugsfunction and run it (see Example section).
  4. AWinBUGSwindow will pop up andR/ S-PLUS will freeze up. The model will now run inWinBUGS. It might take awhile. You will see things happening in the Log window withinWinBUGS. WhenWinBUGSis done, its window will close andR/ S-PLUS will work again.
  5. If an error message appears, re-run withdebug=TRUE.
BUGS version support:
  • WinBUGS1.4.*
{default} OpenBUGS 2.*{via argument program="OpenBUGS"}

References

Gelman, A., Carlin, J.B., Stern, H.S., Rubin, D.B. (2003): Bayesian Data Analysis, 2nd edition, CRC Press. Sturtz, S., Ligges, U., Gelman, A. (2005): R2WinBUGS: A Package for Running WinBUGS from R. Journal of Statistical Software 12(3), 1-16.

See Also

print.bugs, plot.bugs, as well as coda and BRugs packages

Examples

Run this code
# An example model file is given in:
model.file <- system.file(package="R2WinBUGS", "model", "schools.txt")
# Let's take a look:
file.show(model.file)

# Some example data (see ?schools for details):
data(schools)
schools

J <- nrow(schools)
y <- schools$estimate
sigma.y <- schools$sd
data <- list ("J", "y", "sigma.y")
inits <- function(){
    list(theta=rnorm(J, 0, 100), mu.theta=rnorm(1, 0, 100),
         sigma.theta=runif(1, 0, 100))
}
## or alternatively something like:
# inits <- list(
#   list(theta=rnorm(J, 0, 90), mu.theta=rnorm(1, 0, 90),
#        sigma.theta=runif(1, 0, 90)),
#   list(theta=rnorm(J, 0, 100), mu.theta=rnorm(1, 0, 100),
#        sigma.theta=runif(1, 0, 100))
#   list(theta=rnorm(J, 0, 110), mu.theta=rnorm(1, 0, 110),
#        sigma.theta=runif(1, 0, 110)))

parameters <- c("theta", "mu.theta", "sigma.theta")

## You may need to edit "bugs.directory",
## also you need write access in the working directory:
schools.sim <- bugs(data, inits, parameters, model.file,
    n.chains=3, n.iter=5000,
    bugs.directory="c:/Program Files/WinBUGS14/")
print(schools.sim)
plot(schools.sim)

Run the code above in your browser using DataLab