Learn R Programming

RAMClustR (version 1.3.1)

rc.feature.filter.cv: rc.feature.filter.cv

Description

extractor for xcms objects in preparation for clustering

Usage

rc.feature.filter.cv(ramclustObj = NULL, qc.tag = "QC", max.cv = 0.5)

Value

ramclustR object with total extracted ion normalized data.

Arguments

ramclustObj

ramclustObj containing MSdata with optional MSMSdata (MSe, DIA, idMSMS)

qc.tag

character vector of length one or two. If length is two, enter search string and factor name in $phenoData slot (i.e. c("QC", "sample.type"). If length one (i.e. "QC"), will search for this string in the 'sample.names' slot by default.

max.cv

numeric maximum allowable cv for any feature. default = 0.5

Author

Corey Broeckling

Details

This function offers normalization by total extracted ion signal. it is recommended to first run 'rc.feature.filter.blanks' to remove non-sample derived signal.

References

Broeckling CD, Afsar FA, Neumann S, Ben-Hur A, Prenni JE. RAMClust: a novel feature clustering method enables spectral-matching-based annotation for metabolomics data. Anal Chem. 2014 Jul 15;86(14):6812-7. doi: 10.1021/ac501530d. Epub 2014 Jun 26. PubMed PMID: 24927477.