Learn R Programming

RBERT (version 0.1.11)

BertConfig: Construct objects of BertConfig class

Description

Given a set of values as parameter inputs, construct a BertConfig object with those values.

Usage

BertConfig(
  vocab_size,
  hidden_size = 768L,
  num_hidden_layers = 12L,
  num_attention_heads = 12L,
  intermediate_size = 3072L,
  hidden_act = "gelu",
  hidden_dropout_prob = 0.1,
  attention_probs_dropout_prob = 0.1,
  max_position_embeddings = 512L,
  type_vocab_size = 16L,
  initializer_range = 0.02
)

Arguments

vocab_size

Integer; vocabulary size of inputs_ids in BertModel.

hidden_size

Integer; size of the encoder layers and the pooler layer.

num_hidden_layers

Integer; number of hidden layers in the Transformer encoder.

num_attention_heads

Integer; number of attention heads for each attention layer in the Transformer encoder.

intermediate_size

Integer; the size of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.

hidden_act

The non-linear activation function (function or string) in the encoder and pooler.

hidden_dropout_prob

Numeric; the dropout probability for all fully connected layers in the embeddings, encoder, and pooler.

attention_probs_dropout_prob

Numeric; the dropout ratio for the attention probabilities.

max_position_embeddings

Integer; the maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048).

type_vocab_size

Integer; the vocabulary size of the token_type_ids passed into BertModel.

initializer_range

Numeric; the stdev of the truncated_normal_initializer for initializing all weight matrices.

Value

An object of class BertConfig

Examples

Run this code
# NOT RUN {
BertConfig(vocab_size = 30522L)
# }

Run the code above in your browser using DataLab