# NOT RUN {
# beta with two informative components
bm <- mixbeta(inf=c(0.5, 10, 100), inf2=c(0.5, 30, 80))
plot(bm)
plot(bm, fun=pmix)
# for customizations of the plot we need to load ggplot2 first
library(ggplot2)
# show a histogram along with the density
plot(bm) + geom_histogram(data=data.frame(x=rmix(bm, 1000)),
aes(y=..density..), bins=50, alpha=0.4)
# }
# NOT RUN {
# note: we can also use bayesplot for histogram plots with a density ...
library(bayesplot)
mh <- mcmc_hist(data.frame(x=rmix(bm, 1000))) +
overlay_function(fun=dmix, args=list(mix=bm))
# ...and even add each component
for(k in 1:ncol(bm))
mh <- mh + overlay_function(fun=dmix, args=list(mix=bm[[k]]), linetype=I(2))
print(mh)
# }
# NOT RUN {
# normal mixture
nm <- mixnorm(rob=c(0.2, 0, 2), inf=c(0.8, 6, 2), sigma=5)
plot(nm)
plot(nm, fun=qmix)
# obtain ggplot2 object and change title
pl <- plot(nm)
pl + ggtitle("Normal 2-Component Mixture")
# }
Run the code above in your browser using DataLab