# NOT RUN {
data(simu.data)
n <- dim(simu.data)[1]
p <- dim(simu.data)[2]-2
y <- simu.data[,1]
tr <- simu.data[,2]
x <- simu.data[,2+1:p]
x <- scale(x)
### Example 1: Regularized maximum likelihood estimation of propensity scores
ps.cv.rml <- glm.regu.cv(fold=5, nrho=1+10, y=tr, x=x, loss="ml")
ps.cv.rml$rho
ps.cv.rml$err.ave
ps.cv.rml$err.sd
ps.cv.rml$sel.rho
ps.cv.rml$sel.nz
fp.cv.rml <- ps.cv.rml $sel.fit[,1]
check.cv.rml <- mn.ipw(x, tr, fp.cv.rml)
check.cv.rml$est
### Example 2: Regularized calibrated estimation of propensity scores
ps.cv.rcal <- glm.regu.cv(fold=5, nrho=1+10, y=tr, x=x, loss="cal")
ps.cv.rcal$rho
ps.cv.rcal$err.ave
ps.cv.rcal$err.sd
ps.cv.rcal$sel.rho
ps.cv.rcal$sel.nz
fp.cv.rcal <- ps.cv.rcal $sel.fit[,1]
check.cv.rcal <- mn.ipw(x, tr, fp.cv.rcal)
check.cv.rcal$est
# }
# NOT RUN {
# }
Run the code above in your browser using DataLab