RDFTensor v1.3
Monthly downloads
Different Tensor Factorization (Decomposition) Techniques for RDF Tensors (Three-Mode-Tensors)
Different Tensor Factorization techniques suitable for RDF Tensors.
RDF Tensors are three-mode-tensors, binary tensors and usually very sparse.
Currently implemented methods are
'RESCAL' Maximilian Nickel, Volker Tresp, and Hans-Peter Kriegel (2012) <doi:10.1145/2187836.2187874>,
'NMU' Daniel D. Lee and H. Sebastian Seung (1999) <doi:10.1038/44565>,
'ALS', Alternating Least Squares
'parCube' Papalexakis, Evangelos, C. Faloutsos, and N. Sidiropoulos (2012) <doi:10.1007/978-3-642-33460-3_39>,
'CP_APR' C. Chi and T. G. Kolda (2012) <doi:10.1137/110859063>.
The code is mostly converted from MATLAB and Python implementations of these methods.
The package also contains functions to get Boolean (Binary) transformation of the real-number-decompositions.
These methods also are for general tensors, so with few modifications they can be applied for other types of tensor.
Functions in RDFTensor
Name | Description | |
default_parcube_options | parCube initialization parameters | |
CP_01 | transformation of the real-number-CP-decompositions to Binary | |
getTensor | getting tensor from triples | |
CP_R01 | inverse of real-number-CP-decompositions to Binary | |
cp_nmu | Compute nonnegative CP with multiplicative updates(NMU) | |
RDFTensor-package | RDFTensor | |
Tensor_error | RESCAL Tensor error | |
cp_als | Compute a CP decomposition using an alternating least-squares algorithm(als) | |
RescalReconstructBack | reconstruct a tensor from RESCAL factorization result | |
getTensor3m | getting tensor from triples | |
cp_apr | Compute nonnegative CP with alternating Poisson regression(CP_APR) | |
rescal_SO_Val | calaculate scores Subj,Predicate,Obj | |
serial_parCube | Serial 3-mode ParCube algorithm for memory resident tensors | |
spt_mttkrp | Matricized tensor times Khatri-Rao product for ktensor | |
tensor2mat | Reduce tensor to matrix | |
getTnsrijk | tensor frontal slices to indices | |
scRescal | Scalable RESCAL Factorization | |
rescal_Trp_Val | RESCAL scores of triples | |
inv_rescal_sf_prd_chnkgrp | Reconstruct predicate(s) via chunks and grouping | |
recon_1prd_topn_par | Reconstruct predicate top scores on very large graphs | |
rescal | RESCAL: Tensor Factorization. | |
tnsr2trp | sparse tensor to triples | |
rescal_01 | transformation of the real-number-RESCAL-decompositions to Binary | |
umls_tnsr | RDF tensor of UMLS small graph | |
No Results! |
Vignettes of RDFTensor
Name | ||
RDFTensor-Demo.Rmd | ||
No Results! |
Last month downloads
Details
Type | Package |
Date | 2021-01-13 |
VignetteBuilder | knitr |
License | GPL-3 |
NeedsCompilation | no |
Packaged | 2021-01-13 18:50:16 UTC; abdel |
Repository | CRAN |
Date/Publication | 2021-01-14 00:00:02 UTC |
depends | doParallel , foreach , Matrix , methods , parallel , pracma , R (>= 3.2.0) |
suggests | knitr , markdown , pryr , rARPACK |
Contributors | Abdelmoneim Desouki |
Include our badge in your README
[](http://www.rdocumentation.org/packages/RDFTensor)