## EXAMPLE 1:
## internal dataset lc96_bACTXY.rdml (in 'data' directory)
## generated by Roche LightCycler 96. Contains qPCR data
## with four targets and two types.
## Import with default settings.
PATH <- path.package("RDML")
filename <- paste(PATH, "/extdata/", "lc96_bACTXY.rdml", sep ="")
lc96 <- RDML(filename)
## Show targets names
names(lc96$qPCR)
## Show types of the samples for target 'FAM@bACT'
names(lc96$qPCR[["FAM@bACT"]])
## Show dilutions for dye - FAM
lc96$Dilutions$FAM
COPIES <- unique(lc96$Dilutions$FAM["quant",])
## Define calibration curves (type of the samples - 'std').
## No replicates.
library(qpcR)
CAL <- modlist(lc96$qPCR[["FAM@bACT"]]$std,
fluo = c(2, 4, 6, 8, 10))
## Define samples to predict (first two samples with the type - 'unkn').
PRED <- modlist(lc96$qPCR[["FAM@bACT"]]$unkn[1:5],
fluo = grep("^S", names(lc96$qPCR[["FAM@bACT"]]$unkn)[1:2]))
## Conduct quantification.
calib(refcurve = CAL, predcurve = PRED, thresh = "cpD2",
dil = COPIES)
## EXAMPLE 2:
## internal dataset lc96_bACTXY.rdml (in 'data' directory)
## generated by Roche LightCycler 96. Contains qPCR data
## with four targets and two types.
## Import with default settings.
library(chipPCR)
PATH <- path.package("RDML")
filename <- paste(PATH, "/extdata/", "lc96_bACTXY.rdml", sep ="")
lc96 <- RDML(filename)
## Compactly display the structure of the lc96 object
str(lc96)
## Fetch cycle dependent fluorescence for HEX chanel
tmp <- lc96[["qPCR"]][["Hex@X"]][["std"]]
## Fetch vector of dillutions for HEX chanel
dilution <- as.vector(lc96[["Dilutions"]][["Hex"]])
## Use plotCurves function from the chiPCR package to
## get an overview of the amplification curves
plotCurves(tmp[, 1], tmp[, -1])
par(mfrow = c(1,1))
## Use inder function from the chiPCR package to
## calculate the Cq (second derivative maximum, SDM)
SDMout <- sapply(2L:ncol(tmp), function(i) {
SDM <- summary(inder(tmp[, 1], tmp[, i]), print = FALSE)[2]
})
## Use the effcalc function from the chipPCR package and
## plot the results for the calculation of the amplification
## efficiency analysis.
plot(effcalc(dilution, SDMout), CI = TRUE)
## EXAMPLE 3:
## internal dataset BioRad_qPCR_melt.rdml (in 'data' directory)
## generated by Bio-Rad CFX96. Contains qPCR and melting data.
## Import without splitting by targets/types and with
## custom name pattern.
PATH <- path.package("RDML")
filename <- paste(PATH, "/extdata/", "BioRad_qPCR_melt.rdml", sep ="")
cfx96 <- RDML(filename, flat.table=TRUE,
name.pattern = "%TUBE%_%NAME%_%TYPE%_%TARGET%")
## Use plotCurves function from the chiPCR package to
## get an overview of the amplification curves
library(chipPCR)
plotCurves(cfx96$qPCR[, 1], cfx96$qPCR[, -1], type = "l")
## Show some generated names for samples.
names(cfx96$Melt[2L:5])
## Select index numbers of the columns that contain
## samples with dye 'EvaGreen' and have type 'pos'.
cols <- grep("pos_EvaGreen$", names(cfx96$Melt))
## Conduct melting curve analysis.
library(qpcR)
invisible(meltcurve(cfx96$Melt, fluos = cols,
temps = rep(1, length(cols))))
Run the code above in your browser using DataLab