
Last chance! 50% off unlimited learning
Sale ends in
Forecasting regional employment growth with the shift-share analysis (Gerfin model)
shiftp(e_ij1, e_ij2, e_i1, e_i2, e_i3, time1, time2, time3,
industry.names = NULL, print.results = TRUE,
plot.results = FALSE, plot.colours = NULL, plot.title = NULL,
plot.portfolio = FALSE, ...)
a numeric vector with
a numeric vector with
a numeric vector with
a numeric vector with
a numeric vector with
start year (single value)
end year of empirical employment data (single value)
year of prognosis (single value)
Industry names (e.g. from the relevant statistical classification of economic activities)
Logical argument that indicates if the function shows the results or not
Logical argument that indicates if the results have to be plotted
If plot.results = TRUE
: Plot colours
If plot.results = TRUE
: Plot title
Logical argument that indicates if the results have to be plotted in a portfolio matrix additionally
Additional arguments for the portfolio plot (see the function portfolio
)
A list
containing the following objects:
A matrix
containing the shift-share components related to the chosen method
A matrix
containing the industry-specific growth values
A matrix
containing the industry-specific prognosis values
The chosen method, e.g. "Dunn"
The shift-share analysis (Dunn 1960) adresses the regional growth (or decline) regarding the over-all development in the national economy. The aim of this analysis model is to identify which parts of the regional economic development can be traced back to national trends, effects of the regional industry structure and (positive) regional factors. The growth (or decline) of regional employment consists of three factors:
As there is more than one way to calculate a Dunn-type shift-share analysis and the terms are not used consequently in the regional economic literature, this function and the documentation use the formulae and terms given in Farhauer/Kroell (2013). If shift.method = "Dunn"
, this function calculates the net proportionality shift (
This function calculates an employment prognosis based on a Gerfin shift-share analysis for two years.
Arcelus, F. J. (1984): “An Extension of Shift-Share Analysis”. In: In: Growth and Change, 15, 1, p. 3-8.
Barff, R. A./Knight, P. L. (1988): “Dynamic Shift-Share Analysis”. In: Growth and Change, 19, 2, p. 1-10.
Casler, S. D. (1989): “A Theoretical Context for Shift and Share Analysis”. In: Regional Studies, 23, 1, p. 43-48.
Dunn, E. S. Jr. (1960): “A statistical and analytical technique for regional analysis”. In: Papers and Proceedings of the Regional Science Association, 6, p. 97-112.
Esteban-Marquillas, J. M. (1972): “Shift- and share analysis revisited”. In: Regional and Urban Economics, 2, 3, p. 249-261.
Farhauer, O./Kroell, A. (2013): “Standorttheorien: Regional- und Stadtoekonomik in Theorie und Praxis”. Wiesbaden : Springer.
Gerfin, H. (1964): “Gesamtwirtschaftliches Wachstum und regionale Entwicklung”. In: Kyklos, 17, 4, p. 565-593.
Schoenebeck, C. (1996): “Wirtschaftsstruktur und Regionalentwicklung: Theoretische und empirische Befunde fuer die Bundesrepublik Deutschland”. Dortmunder Beitraege zur Raumplanung, 75. Dortmund.
Spiekermann, K./Wegener, M. (2008): “Modelle in der Raumplanung I. 4 - Input-Output-Modelle”. Power Point presentation. http://www.spiekermann-wegener.de/mir/pdf/MIR1_4_111108.pdf.
# NOT RUN {
# Example data from Spiekermann/Wegener 2008:
# two regions, two industries
region1_2000 <- c(1400, 3600)
region1_2006 <- c(1000, 4400)
region2_2000 <- c(1200, 1800)
region2_2006 <- c(1100, 3700)
region3_2000 <- c(1100, 900)
region3_2006 <- c(800, 1000)
# regional values
nation_2000 <- c(3700, 6300)
nation_2006 <- c(2900, 9100)
# national values
nation_2010 <- c(2500, 12500)
# national prognosis values
# Analysis for region 1:
shiftp(region1_2000, region1_2006, nation_2000,
nation_2006, e_i3 = nation_2010,
time1 = 2000, time2 = 2006, time3 = 2010)
# Analysis for region 2:
shiftp(region2_2000, region2_2006, nation_2000,
nation_2006, e_i3 = nation_2010,
time1 = 2000, time2 = 2006, time3 = 2010)
# Analysis for region 3:
shiftp(region3_2000, region3_2006, nation_2000,
nation_2006, e_i3 = nation_2010,
time1 = 2000, time2 = 2006, time3 = 2010)
# }
Run the code above in your browser using DataLab