## Visualizing rsd data
library("REPTILE")
data(rsd)
## Epigenomic signature of query region grouped by labels
ind_pos = rsd$training_data$region_label == 1
pos_region = rsd$training_data$region_epimark[ind_pos,]
neg_region = rsd$training_data$region_epimark[!ind_pos,]
## Epigenomic signature of DMRs grouped by labels
ind_pos = rsd$training_data$DMR_label == 1
pos_DMR = rsd$training_data$DMR_epimark[ind_pos,]
neg_DMR = rsd$training_data$DMR_epimark[!ind_pos,]
## Prepare the data format required for plotting
n = ncol(rsd$training_data$DMR_epimark) ## Number of features
feature_data_DMR = list()
feature_data_region = list()
for(i in 1:n){
feature_data_DMR <- append(feature_data_DMR,
list(neg_DMR[,i],pos_DMR[,i],
NA,NA))
feature_data_region <- append(feature_data_region,
list(neg_region[,i],pos_region[,i],
NA,NA))
}
## Plot the feature distribution
par(mar=c(4,8,4,4))
## - query region
b <- boxplot(feature_data_region,
xlab = "feature value",
notch=TRUE,outline=FALSE,yaxt='n',
xlim = c(1,n*4-2),ylim=c(-7,7),
horizontal=TRUE,
col=c(rgb(65,105,225,max=255),rgb(250,128,114,max=255)),
main = "Feature value distribution in query regions"
)
text(par("usr")[1]-0.2, seq(1.5,n*4-2,by=4),
labels=gsub("_","-",colnames(rsd$training_data$region_epimark)),
xpd = TRUE,adj=1)
legend(-8,4*n+4,c("negative","enhancer"),ncol=2,
fill = c(rgb(250,128,114,max=255),rgb(65,105,225,max=255)),
xpd=TRUE,bty='n')
## - DMR
b <- boxplot(feature_data_DMR,
xlab = "feature value",
notch=TRUE,outline=FALSE,yaxt='n',
xlim = c(1,n*4-2),ylim=c(-7,7),
horizontal=TRUE,
col=c(rgb(65,105,225,max=255),rgb(250,128,114,max=255)),
main = "Feature value distribution in DMRs"
)
text(par("usr")[1]-0.2, seq(1.5,n*4-2,by=4),
labels=gsub("_","-",colnames(rsd$training_data$DMR_epimark)),
xpd = TRUE,adj=1)
legend(-8,4*n+4,c("negative","enhancer"),ncol=2,
fill = c(rgb(250,128,114,max=255),rgb(65,105,225,max=255)),
xpd=TRUE,bty='n')
Run the code above in your browser using DataLab