library(REffectivePred)
## Read in the data
path_to_data <- system.file("extdata/NY_OCT_4_2022.csv", package = "REffectivePred")
data <- read.csv(path_to_data)
head(data)
cases <- diff(c(0, data$cases)) # Convert cumulative cases into daily cases
lt <- length(cases) # Length of cases
Time <- as.Date(data$date, tryFormats = c("%d-%m-%Y", "%d/%m/%Y"))
navigate_to_config() # Open the config file, make any necessary changes here.
path_to_config <- system.file("config.yml", package = "REffectivePred") # Read config file
cfg <- load_config() # Build the cfg object
# Example 1. Using fits from Romanescu et al. (2023)
r1 <- pred.curve(
a1 = 0.58,
a2 = 1.12,
nu = 0.56,
variant.transm = c(1,1.22,0.36,0.56),
Psi = c(0.58,0.52,0.49),
cases = cases,
cfg = cfg
)
plot(cases, xlab="Day", ylab="Predicted cases")
lines(r1$'Predicted Cases', col='red')
# Example 2. Best fit curve
est <- estimate.mle(
cases = cases,
cfg = cfg
)
a1 <- est$a1
a2 <- est$a2
a3 <- est$a3
a4 <- est$a4
nu <- est$nu
vt <- c(1, est$vt_params_est)
psi <- est$Psi
betas <- est$betas
r1 <- pred.curve(
a1 = a1,
a2 = a2,
a3 = a3,
a4 = a4,
nu = nu,
variant.transm = vt,
Psi = psi,
betas = betas,
cases = cases,
cfg = cfg
)
plot(r1$'Predicted Infections', xlab="Day", ylab="Predicted infections")
Run the code above in your browser using DataLab