Learn R Programming

RFOC (version 1.0-4)

alpha95: 95 percent confidence for Spherical Distribution

Description

Calculates conical projection angle for 95% confidence bounds for mean of spherically distributed data.

Usage

alpha95(az, iang)

Arguments

az
vector of azimuths, degrees
iang
vector of dips, degrees

Value

  • LIST:
  • Irresultant inclination, degrees
  • Drresultant declination, degrees
  • Rresultant sum of vectors, normalized
  • KK-dispersion value
  • Sspherical variance
  • Alph9595% confidence angle, degrees
  • Kappalog ratio of eignevectors
  • EEigenvactors
  • MATmatrix of cartesian vectors

Details

Program calculates the cartesian coordinates of all poles, sums and returns the resultant vector, its azimuth and length (R). For N points, statistics include: $$K = \frac {N-1} { N-R}$$ $$S = \frac{81^{\circ} }{\sqrt{K}}$$ $$\kappa = \frac{log( \frac{\epsilon_1}{\epsilon_2} )}{log(\frac{\epsilon_2}{\epsilon_3} )}$$ $$\alpha_{95} = cos^{-1} \left[ 1 - \frac {N-R}{R} \left( 20^{\frac{1}{N-1}} - 1 \right) \right]$$ where $\epsilon$'s are the relevant eigenvalues of matrix MAT and angles are in degrees.

References

Davis, John C., 2002, Statistics and data analysis in geology, Wiley, New York, 637p.

See Also

addsmallcirc

Examples

Run this code
paz = rnorm(100, mean=297, sd=10)
pdip = rnorm(100, mean=52, sd=8)
ALPH = alpha95(paz, pdip)

#########  draw stereonet
net()
############  add points
focpoint(paz, pdip, col='red',  pch=3, lab="", UP=FALSE)
###############  add 95 percent confidence bounds
addsmallcirc(ALPH$Dr, ALPH$Ir, ALPH$Alph95, BALL.radius = 1, N = 25,
add = TRUE, lwd=1, col='blue')

############  second example:
paz = rnorm(100, mean=297, sd=100)
pdip = rnorm(100, mean=52, sd=20)
ALPH = alpha95(paz, pdip)

net()
focpoint(paz, pdip, col='red',  pch=3, lab="", UP=FALSE)

addsmallcirc(ALPH$Dr, 90-ALPH$Ir, ALPH$Alph95, BALL.radius = 1, N = 25,
add = TRUE, lwd=1, col='blue')

Run the code above in your browser using DataLab