data(imp20000)
imp<-log(imp20000$importances)
t2<-imp20000$counts
temp<-imp[t2 > 1] #see
temp<-temp[temp != -Inf]
temp <- temp - min(temp) + .Machine$double.eps
f_fit <- f.fit(temp)
y <- f_fit$zh$density
x <- f_fit$midpoints
df <- data.frame(x, y)
fitted_parameters <- fit.to.data.set(df, temp, try.counter = 3)
fitted_parameters
aa <- local.fdr(f_fit, df$x, FUN = my.dsn, xi = fitted_parameters$Estimate[1],
omega = fitted_parameters$Estimate[2], lambda = fitted_parameters$Estimate[3],
debug.flag = 0, plot.string = "initial")
plot(x,y,axes=FALSE,type="l",col="blue",main = "local fdr",
xlab="importances",ylab="")
axis(2, pretty( c(0,max(y)+0.5*max(y)),10))
oldpar <- par(new = TRUE)
plot(x, aa, type="l",col="green",main = "",xlab="",ylab="",axes=FALSE)
abline(h = 0.2)
axis(4, pretty( aa,10))
axis(1,pretty(x,10))
box() #- to make it look "as usual
legend("topright",c("density importances","local fdr"),col=c("blue","green"),lty=1)
par(oldpar)
# \donttest{
library(RFlocalfdr.data)
data(ch22)
imp<-log(ch22$imp)
t2<-ch22$C
imp<-imp[t2 > 30]
imp <- imp - min(imp) + .Machine$double.eps
debug.flag <- 0
f_fit <- f.fit(imp, debug.flag = debug.flag)
y <- f_fit$zh$density
x <- f_fit$midpoints
df <- data.frame(x, y)
initial.estimates <- fit.to.data.set.wrapper(df, imp, debug.flag = debug.flag,
return.all = FALSE)
aa <- local.fdr(f_fit, df$x, FUN = my.dsn, xi = initial.estimates$Estimate[1],
omega = initial.estimates$Estimate[2], lambda = initial.estimates$Estimate[3], debug.flag = 0,
plot.string = "initial")
plot(x,y,axes=FALSE,type="l",col="blue",main = "local fdr",
xlab="importances",ylab="")
axis(2, pretty( c(0,max(y)+0.5*max(y)),10))
oldpar <- par(new = TRUE)
plot(x, aa, type="l",col="green",main = "",xlab="",ylab="",axes=FALSE)
abline(h = 0.2)
axis(4, pretty( aa,10))
axis(1,pretty(x,10))
box() #- to make it look "as usual
legend("topright",c("density importances","local fdr"),col=c("blue","green"),lty=1)
par(oldpar)
# }
Run the code above in your browser using DataLab