data(imp20000)
imp <- log(imp20000$importances)
t2 <- imp20000$counts
plot(density((imp)))
hist(imp,col=6,lwd=2,breaks=100,main="histogram of importances")
res.temp <- determine_cutoff(imp, t2 ,cutoff=c(0,1,2,3),plot=c(0,1,2,3),Q=0.75,try.counter=1)
plot(c(0,1,2,3),res.temp[,3])
imp<-imp[t2 > 1]
qq <- plotQ(imp,debug.flag = 0)
ppp<-run.it.importances(qq,imp,debug=0)
aa<-significant.genes(ppp,imp,cutoff=0.2,debug.flag=0,do.plot=2, use_95_q=TRUE)
length(aa$probabilities) #11#
names(aa$probabilities)
# \donttest{
library(RFlocalfdr.data)
data(ch22)
?ch22
#document how the data set is created
plot(density(log(ch22$imp)))
t2 <-ch22$C
imp<-log(ch22$imp)
#Detemine a cutoff to get a unimodal density.
# This was calculated previously. See determine_cutoff
imp<-imp[t2 > 30]
qq <- plotQ(imp,debug.flag = 0)
data(smoking)
?smoking
y<-smoking$y
smoking_data<-smoking$rma
y.numeric <-ifelse((y=="never-smoked"),0,1)
library(ranger)
rf1 <-ranger::ranger(y=y.numeric ,x=smoking_data,importance="impurity",seed=123, num.trees = 10000,
classification=TRUE)
t2 <-count_variables(rf1)
imp<-log(rf1$variable.importance)
plot(density(imp),xlab="log importances",main="")
cutoffs <- c(2,3,4,5)
res.con<- determine_cutoff(imp,t2,cutoff=cutoffs,plot=c(2,3,4,5))
plot(cutoffs,res.con[,3],pch=15,col="red",cex=1.5,ylab="max(abs(y - t1))")
cutoffs[which.min(res.con[,3])]
temp<-imp[t2 > 3]
temp <- temp - min(temp) + .Machine$double.eps
qq <- plotQ(temp)
ppp<-run.it.importances(qq,temp,debug.flag = 0)
aa<-significant.genes(ppp,temp,cutoff=0.05,debug.flag=0,do.plot=TRUE,use_95_q=TRUE)
length(aa$probabilities) # 17
# }
Run the code above in your browser using DataLab