# NOT RUN {
library(rgdal)
library(raster)
data(ValparaisoPPts)
data(ValparaisoPPgis)
data(ValparaisoSHP)
chirps.fname <- system.file("extdata/CHIRPS5km.tif",package="RFmerge")
prsnncdr.fname <- system.file("extdata/PERSIANNcdr5km.tif",package="RFmerge")
dem.fname <- system.file("extdata/ValparaisoDEM5km.tif",package="RFmerge")
CHIRPS5km <- brick(chirps.fname)
PERSIANNcdr5km <- brick(prsnncdr.fname)
ValparaisoDEM5km <- raster(dem.fname)
covariates <- list(chirps=CHIRPS5km, persianncdr=PERSIANNcdr5km,
dem=ValparaisoDEM5km)
# }
# NOT RUN {
# The following code assumes that the region is small enough for neglecting
# the impact of computing Euclidean distances in geographical coordinates.
# If this is not the case, please read the vignette 'Tutorial for merging
# satellite-based precipitation datasets with ground observations using RFmerge'
# without using parallelisation
rfmep <- RFmerge(x=ValparaisoPPts, metadata=ValparaisoPPgis, cov=covariates,
id="Code", lat="lat", lon="lon", mask=ValparaisoSHP, training=1)
# Detecting if your OS is Windows or GNU/Linux,
# and setting the 'parallel' argument accordingly:
onWin <- ( (R.version$os=="mingw32") | (R.version$os=="mingw64") )
ifelse(onWin, parallel <- "parallelWin", parallel <- "parallel")
#Using parallelisation, with a maximum number of nodes/cores to be used equal to 2:
par.nnodes <- min(parallel::detectCores()-1, 2)
rfmep <- RFmerge(x=ValparaisoPPts, metadata=ValparaisoPPgis, cov=covariates,
id="Code", lat="lat", lon="lon", mask=ValparaisoSHP,
training=0.8, parallel=parallel, par.nnodes=par.nnodes)
# }
# NOT RUN {
# }
Run the code above in your browser using DataLab