Carries out least trimmed squares (LTS) robust regression with an evolutionary algorithm. The LTS regression method minimizes the sum of the $h$ smallest squared residuals. Deprecated. Use robreg.evol instead.
Matrix or data frame containing the explanatory variables
h
Parameter determining the trimming
adjust
Whether to perform intercept adjustment at each step
runs
Number of independent runs
generations
Number of generations after which the algorithm will be stopped
Value
The function LTSevol returns an object of class "ltsEA". This object contains:
summary
Summary of the FrEAK run
best
The best subset found
coefficients
Vector of coefficient estimates
crit
The value of the objective function of the LTS regression method, i.e., the sum of the h smallest squared raw residuals
References
O. Morell, T. Bernholt, R. Fried, J. Kunert, and R. Nunkesser (2008). An Evolutionary Algorithm for LTS-Regression: A Comparative Study. Proceedings of COMPSTAT 2008. To Appear.
P. J. Rousseeuw (1984), Least Median of Squares Regression. Journal of the American Statistical Association79, 871--881.