Learn R Programming

RHPCBenchmark (version 0.1.0)

SvdMicrobenchmark: Conducts a single performance trial with the singular value decomposition

Description

SvdMicrobenchmark conducts a single performance trial of the SVD dense matrix kernel for the matrix given in the kernelParameters parameter. The function times the single function call svd(kernelParameters$A).

Usage

SvdMicrobenchmark(benchmarkParameters, kernelParameters)

Arguments

benchmarkParameters
an object of type DenseMatrixMicrobenchmark specifying various parameters for microbenchmarking the dense matrix kernel
kernelParameters
a list of matrices or vectors to be used as input to the dense matrix kernel

Examples

Run this code
## Not run: ------------------------------------
# # Allocate input to the singular value decomposition microbenchmark for the
# # first matrix size to be tested
# microbenchmarks <- GetDenseMatrixDefaultMicrobenchmarks()
# kernelParameters <- SvdAllocator(microbenchmarks[["svd"]], 1)
# # Execute the microbenchmark
# timings <- SvdMicrobenchmark(microbenchmarks[["svd"]], kernelParameters)
## ---------------------------------------------

Run the code above in your browser using DataLab