data(dataDIVAT2)
tune.model<-tune.cox.aic(times="times", failures="failures", data=dataDIVAT2,
cov.quanti=c("age"), cov.quali=c("hla", "retransplant", "ecd"))
tune.model$optimal$final.model.cov # the covariate to include in the model with the best AIC
# The estimation of the training modelwith the corresponding lambda value
model<-cox.aic(times="times", failures="failures", data=dataDIVAT2,
cov.quanti=c("age"), cov.quali=c("hla", "retransplant", "ecd"),
final.model.cov=tune.model$optimal$final.model.cov)
# The resulted predicted survival of the first subject of the training sample
plot(y=model$predictions[1,], x=model$times, xlab="Time (years)", ylab="Predicted survival",
col=1, type="l", lty=1, lwd=2, ylim=c(0,1))
Run the code above in your browser using DataLab