data(dataDIVAT1)
# A subgroup analysis to reduce the time needed for this example
dataDIVAT1$id<-c(1:nrow(dataDIVAT1))
set.seed(2)
d3<-dataDIVAT1[dataDIVAT1$id %in% sample(dataDIVAT1$id, 250, replace = FALSE),]
# To illustrate the use of a 3-state model, individuals with trajectory 13 and 123 are
# censored at the time of transition into state X=3
d3$trajectory[d3$trajectory==13]<-1
d3$trajectory[d3$trajectory==123]<-12
d3$trajectory[d3$trajectory==14]<-13
d3$trajectory[d3$trajectory==124]<-123
# 3-state parametric semi-Markov model : does 'z' influence both the
# transition 1->3 ? We only reduced the precision and the number of iteration
# to save time in this example, prefere the default values.
m1 <- semi.markov.3states(times1=d3$time1, times2=d3$time2,
sequences=d3$trajectory, dist=c("E","E","E"),
ini.dist.12=c(9.93), ini.dist.13=c(11.54), ini.dist.23=c(10.21),
cov.12=d3$z, init.cov.12=c(-0.13), names.12=c("beta12_z"),
cov.13=d3$z, init.cov.13=c(1.61), names.13=c("beta13_z"),
conf.int=TRUE, silent=FALSE, precision=0.001)
m1
m0 <- semi.markov.3states(times1=d3$time1, times2=d3$time2,
sequences=d3$trajectory, dist=c("E","E","E"),
ini.dist.12=c(9.93), ini.dist.13=c(11.54), ini.dist.23=c(10.21),
cov.12=d3$z, init.cov.12=c(-0.13), names.12=c("beta12_z"),
conf.int=TRUE, silent=FALSE, precision=0.001)
m0
lrs.multistate(model1=m1, model0=m0)
Run the code above in your browser using DataLab