## Not run:
# y <- c(rnorm(100, 0, 1), rnorm(10, -3, 1), rnorm(20, 3, 1), rnorm(100,
# 0, 1))
# Pos <- round(runif(230))
# Pos <- cumsum(Pos)
# Chrom <- rep(1:23, rep(10, 23))
# jp <- list(sigma.tau.mu=rep(0.5, 4), sigma.tau.sigma.2=rep(0.3, 4),
# sigma.tau.beta=rep(0.7, 4), tau.split.mu=0.5, tau.split.beta=0.5)
# fit.Chrom <- RJaCGH(y=y, Pos=Pos, Chrom=Chrom, model="Chrom",
# burnin=100, TOT=1000, jump.parameters=jp, k.max=4)
# fit.Genom <- RJaCGH(y=y, Pos=Pos, Chrom=Chrom, model="Genome", burnin=100,
# TOT=1000, jump.parameters=jp, k.max=4)
# fit.none <- RJaCGH(y=y, Pos=Pos, Chrom=NULL, model="None",
# burnin=100, TOT=1000, jump.parameters=jp, k.max=4)
#
# plot(fit.Chrom)
# plot(fit.Chrom, array="array1")
# plot(fit.Genom)
# plot(fit.none)
#
#
# y2 <- c(rnorm(100, 0, 1), rnorm(10, -3, 1), rnorm(20, 3, 1),
# rnorm(100, 0, 1))
#
# ya <- cbind(y, y2)
#
# fit.Chrom.array <- RJaCGH(y=ya, Pos=Pos, Chrom=Chrom, model="Chrom",
# burnin=100, TOT=1000, jump.parameters=jp, k.max=4)
# fit.Genom.array <- RJaCGH(y=ya, Pos=Pos, Chrom=Chrom, model="Genome",
# burnin=100, TOT=1000, jump.parameters=jp, k.max=4)
# fit.none.array <- RJaCGH(y=ya, Pos=Pos, Chrom=NULL, model="None",
# burnin=100, TOT=1000, jump.parameters=jp, k.max=4)
#
# plot(fit.Chrom.array)
# plot(fit.Genom.array)
# plot(fit.none.array)
#
# ## End(Not run)
Run the code above in your browser using DataLab