powered by
CBA_C Associative Classification Algorithm from KEEL.
CBA_C(train, test, min_support, min_confidence, pruning, maxCandidates)
Train dataset as a data.frame object
Test dataset as a data.frame object
min_support. Default value = 0.01
min_confidence. Default value = 0.5
indicates wether pruning or not. Default value = TRUE
maxCandidates; if 0, no limit. Default value = 80000
A data.frame with the actual and predicted classes for both train and test datasets.
train
test
# NOT RUN { #data <- loadKeelDataset("breast") #Create algorithm #algorithm <- RKEEL::CBA_C(data, data) #Run algorithm #algorithm$run() #See results #algorithm$testPredictions # }
Run the code above in your browser using DataLab