CBA_C Associative Classification Algorithm from KEEL.
CBA_C(train, test, min_support, min_confidence, pruning, maxCandidates)
A data.frame with the actual and predicted classes for both train
and test
datasets.
Train dataset as a data.frame object
Test dataset as a data.frame object
min_support. Default value = 0.01
min_confidence. Default value = 0.5
indicates wether pruning or not. Default value = TRUE
maxCandidates; if 0, no limit. Default value = 80000
data <- loadKeelDataset("breast")
#Create algorithm
algorithm <- RKEEL::CBA_C(data, data)
#Run algorithm
algorithm$run()
#See results
algorithm$testPredictions
Run the code above in your browser using DataLab