FCRA_C Classification Algorithm from KEEL.
FCRA_C(train, test, generations, pop_size, length_S_C, WCAR,
WV, crossover_prob, mut_prob, n1, n2, max_iter,
linguistic_values, seed)
A data.frame with the actual and predicted classes for both train
and test
datasets.
Train dataset as a data.frame object
Test dataset as a data.frame object
generations. Default value = 50
pop_size. Default value = 30
length_S_C. Default value = 10
WCAR. Default value = 10.0
WV. Default value = 1.0
crossover_prob. Default value = 1.0
mut_prob. Default value = 0.01
n1. Default value = 0.001
n2. Default value = 0.1
max_iter. Default value = 100
linguistic_values. Default value = 5
Seed for random numbers. If it is not assigned a value, the seed will be a random number
# \donttest{
data_train <- RKEEL::loadKeelDataset("iris_train")
data_test <- RKEEL::loadKeelDataset("iris_test")
#Create algorithm
algorithm <- RKEEL::FCRA_C(data_train, data_test, generations=10, pop_size=10)
#Run algorithm
algorithm$run()
#See results
algorithm$testPredictions
# }
Run the code above in your browser using DataLab