Last chance! 50% off unlimited learning
Sale ends in
MLP_BP_C Classification Algorithm from KEEL.
MLP_BP_C(train, test, hidden_layers, hidden_nodes, transfer,
eta, alpha, lambda, test_data, validation_data,
cross_validation, cycles, improve, tipify_inputs,
save_all, seed)
A data.frame with the actual and predicted classes for both train
and test
datasets.
Train dataset as a data.frame object
Test dataset as a data.frame object
hidden_layers. Default value = 2
hidden_nodes. Default value = 15
transfer. Default value = "Htan"
eta. Default value = 0.15
alpha. Default value = 0.1
lambda. Default value = 0.0
test_data. Default value = TRUE
validation_data. Default value = FALSE
cross_validation. Default value = FALSE
cycles. Default value = 10000
improve. Default value = 0.01
tipify_inputs. Default value = TRUE
save_all. Default value = FALSE
Seed for random numbers. If it is not assigned a value, the seed will be a random number
# \donttest{
data_train <- RKEEL::loadKeelDataset("iris_train")
data_test <- RKEEL::loadKeelDataset("iris_test")
#Create algorithm
algorithm <- RKEEL::MLP_BP_C(data_train, data_test, )
#Run algorithm
algorithm$run()
#See results
algorithm$testPredictions
# }
Run the code above in your browser using DataLab