exactLRT or exactRLRT.LRTSim(X, Z, q, sqrt.Sigma, seed = NA, nsim = 10000, log.grid.hi = 8,
log.grid.lo=-10, gridlength=200,
parallel = c("no", "multicore", "snow"),
ncpus = 1L, cl = NULL)
RLRTSim(X, Z, qrX, sqrt.Sigma, lambda0 = NA, seed = NA, nsim = 10000, use.approx=0,
log.grid.hi=8, log.grid.lo=-10, gridlength=200,
parallel = c("no", "multicore", "snow"),
ncpus = 1L, cl = NULL)set.seeduse.approx*(sum of all eigenvalues) are used.nsim realizations of $y$
drawn under the null hypothesis.
log.grid.hi and log.grid.lo are the lower and upper
limits of this grid on the log scale.
gridlength is the number of points on the grid.\
These are just wrapper functions for the underlying C code.Scheipl, F., Greven, S. and Kuechenhoff, H (2008) Size and power of tests for a zero random effect variance or polynomial regression in additive and linear mixed models, Computational Statistics & Data Analysis, 52(7):3283-3299
exactLRT, exactRLRT for testslibrary(lme4)
g <- rep(1:10, e = 10)
x <- rnorm(100)
y <- 0.1 * x + rnorm(100)
m <- lmer(y ~ x + (1|g), REML=FALSE)
m0 <- lm(y ~ 1)
(obs.LRT <- 2*(logLik(m)-logLik(m0)))
X <- getME(m,"X")
Z <- t(as.matrix(getME(m,"Zt")))
sim.LRT <- LRTSim(X, Z, 1, diag(10))
(pval <- mean(sim.LRT > obs.LRT))Run the code above in your browser using DataLab