# toy example derived from MovieLens 100K dataset
data("MovieLensToy")
# set up validation sets so that methods use same data splits
set.seed(20250723)
observed <- which(!is.na(MovieLensToy))
holdout_splits <- holdout(observed, R = 5)
# robust discrete matrix completion with hyperparameter tuning
fit_RDMC <- rdmc_tune(
MovieLensToy,
lambda = fraction_grid(nb_lambda = 6),
splits = holdout_splits
)
# Soft-Impute with discretization step and hyperparameter tuning
fit_SI <- soft_impute_tune(
MovieLensToy,
lambda = fraction_grid(nb_lambda = 6, reverse = TRUE),
splits = holdout_splits
)
# extract optimal values of regularization parameter
get_lambda(fit_RDMC)
get_lambda(fit_SI)
Run the code above in your browser using DataLab